已知∠1=∠2,∠3=∠4,∠C=28°,求∠P
1个回答
展开全部
解:设直线AD与BC交于点O,直线AP与BC交于E
∵∠1=∠2
∴∠CAD=2∠1
∴∠COD=∠CAD+∠C=2∠1+∠C
∵∠3=∠4
∴∠CBD=2∠3
∴∠COD=∠CBD+∠D=2∠3+∠D
∴2∠1+∠C=2∠3+∠D
∴∠1-∠3=(∠D-∠C)/2
∵∠AEB=∠1+∠C,∠AEB=∠3+∠P
∴∠1+∠C=∠3+∠P
∴∠1-∠3=∠P-∠C
∴(∠D-∠C)/2=∠P-∠C
∴∠P=(∠C+∠D)/2
∵∠C=32, ∠D=28
∴∠P=(32+28)/2=30°
∵∠1=∠2
∴∠CAD=2∠1
∴∠COD=∠CAD+∠C=2∠1+∠C
∵∠3=∠4
∴∠CBD=2∠3
∴∠COD=∠CBD+∠D=2∠3+∠D
∴2∠1+∠C=2∠3+∠D
∴∠1-∠3=(∠D-∠C)/2
∵∠AEB=∠1+∠C,∠AEB=∠3+∠P
∴∠1+∠C=∠3+∠P
∴∠1-∠3=∠P-∠C
∴(∠D-∠C)/2=∠P-∠C
∴∠P=(∠C+∠D)/2
∵∠C=32, ∠D=28
∴∠P=(32+28)/2=30°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询