如图,双曲线y=2/x (x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,

如图,双曲线y=2/x(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得AB′C,B′点落在... 如图,双曲线y=2/x (x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得AB′C,B′点落在OA上,则四边形OABC的面积是___ 展开
jiangg79220
2012-04-06 · TA获得超过188个赞
知道答主
回答量:54
采纳率:0%
帮助的人:36.3万
展开全部

从C引x轴垂线于B'',由于∠B'OC=∠B''OC,∠CB'O=∠CB''O=90度,可以证明△OB'C和△OB''C是全等的,又因为∠ABC=90°。设∠B'OC为a度,可以证明∠B'CO=∠B''CO=(90-a)度,AB与x轴平行,BC和CB''在一条直线上,且可以得到BC=B'C=B''C。由A点向Y轴引垂线,垂点为A',可以知道四边形A'BB''O的面积S=(BC+CB'')*OB''=2CB''*OB''因为点C为双曲线上的点,故S=2*2=4。而同样,S△OAA'和S△OB''C的面积各为1,所以四边形OABC的面积是2。

fjzhhst
2012-04-05 · TA获得超过9045个赞
知道小有建树答主
回答量:606
采纳率:0%
帮助的人:470万
展开全部
解:延长BC交X轴于D点,设A(X1,2/X1)、C(X2,2/X2),则B(X2,2/X1)、D(X2,0),
依题意,△ABC≌△AB′C,△OB′C≌△ODC,所以B′C=BC=CD,所以X1=2X2,AB=X1-X2=X2,
四边形OABC的面积=S梯形OABD-S△ODC=(X2+X1)*0.5*2/X2-X2*2/X2*2=3-1=2。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lanchengsong
2013-04-07
知道答主
回答量:1
采纳率:0%
帮助的人:1506
展开全部
解:延长BC交X轴于D点,设A(X1,2/X1)、C(X2,2/X2),则B(X2,2/X1)、D(X2,0),
依题意,△ABC≌△AB′C,△OB′C≌△ODC,所以B′C=BC=CD,所以X2=2X1,AB=X2-X1=X2,
四边形OABC的面积=S梯形OABD-S△ODC=(X2+X1)*0.5*2/X1-X2*2/X2*2=3-1=2。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式