设数列{an}的前n项和Sn=n^2,数列{bn}满足bn=an/an+m(m属于N*),(1)若b1,b2,b8成
等比数列,试求m的值;(2)是否存在m,使得数列{bn}中存在某项bt满足b1,b4,bt(t属于N*,t大于等于5)成等差数列?若存在,指出m的个数,若不存在,说明理由...
等比数列,试求m的值;(2)是否存在m,使得数列{bn}中存在某项bt满足b1,b4,bt(t属于N*,t大于等于5)成等差数列?若存在,指出m的个数,若不存在,说明理由。
展开
1个回答
展开全部
n>=2
Sn=n^2
Sn-1=(n-1)^2
Sn-Sn-1=n^2-(n-1)^2=2n-1=an
(n>=2)
n=1,a1=S1=1,
a1=2-1=1
an=2n-1(n,N*)
bn=an/(an+m)=(2n-1)/(2n-1+m)
b1=1/(1+m),b2=3/(3+m),b8=15/(15+m)
b2^2=b1b8
9/(3+m)^2=1/(1+m)*15/(15+m)
3/(3+m)^2=5/(1+m)(15+m)
3(1+m)(15+m)=5(3+m)^2
3(15+16m+m^2)=5(9+6m+m^2)
45+48m+3m^2=45+30m+5m^2
2m^2-18m=0
m^2-9m=0
m=0,m=9
m,N*
m=9
(2)若存在
b1=1/(1+m),b4=7/(7+m),bt=(2t-1)/(2t-1+m)
2b4=b1+bt
2*7/(7+m)=1/(1+m)+(2t-1)/(2t-1+m)
14/(7+m)=1/(1+m)+(2t-1)/(2t-1+m)
14(1+m)(2t-1+m)=(7+m)(2t-1+m)+(2t-1)(7+m)(1+m)
Sn=n^2
Sn-1=(n-1)^2
Sn-Sn-1=n^2-(n-1)^2=2n-1=an
(n>=2)
n=1,a1=S1=1,
a1=2-1=1
an=2n-1(n,N*)
bn=an/(an+m)=(2n-1)/(2n-1+m)
b1=1/(1+m),b2=3/(3+m),b8=15/(15+m)
b2^2=b1b8
9/(3+m)^2=1/(1+m)*15/(15+m)
3/(3+m)^2=5/(1+m)(15+m)
3(1+m)(15+m)=5(3+m)^2
3(15+16m+m^2)=5(9+6m+m^2)
45+48m+3m^2=45+30m+5m^2
2m^2-18m=0
m^2-9m=0
m=0,m=9
m,N*
m=9
(2)若存在
b1=1/(1+m),b4=7/(7+m),bt=(2t-1)/(2t-1+m)
2b4=b1+bt
2*7/(7+m)=1/(1+m)+(2t-1)/(2t-1+m)
14/(7+m)=1/(1+m)+(2t-1)/(2t-1+m)
14(1+m)(2t-1+m)=(7+m)(2t-1+m)+(2t-1)(7+m)(1+m)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询