已知复数z = (1-i)^2+3(1+i) /2-i,若z^2+az+b=1-i,求实数a,b的值?/
2个回答
展开全部
已知复数z = (1-i)²+3(1+i) /(2-i),若z²+az+b=1-i,求实数a,b的值?
解:z=(1-2i+i²)+3(1+i)(2+i)/[(2-i)(2+i)]=-2i+3(2+3i+i²)/5=-2i+3(1+3i)/5=(3-i)/5,
代入z²+az+b=1-i中得[(3-i)/5]²+a(3-i)/5+b=1-i
把平方项展开得:(8-6i)/25+a(3-i)/5+b=1-i
用25乘两边去分母得:8-6i+5a(3-i)+25b=25(1-i)
移项,合并同类项得:(19-5a)i+25b+15a-17=0
故得19-5a=0,即有a=19/5;25b+15×(19/5)-17=25b+40=0,故b=-40/25=-8/5.
即a=19/5,b=-8/5.
解:z=(1-2i+i²)+3(1+i)(2+i)/[(2-i)(2+i)]=-2i+3(2+3i+i²)/5=-2i+3(1+3i)/5=(3-i)/5,
代入z²+az+b=1-i中得[(3-i)/5]²+a(3-i)/5+b=1-i
把平方项展开得:(8-6i)/25+a(3-i)/5+b=1-i
用25乘两边去分母得:8-6i+5a(3-i)+25b=25(1-i)
移项,合并同类项得:(19-5a)i+25b+15a-17=0
故得19-5a=0,即有a=19/5;25b+15×(19/5)-17=25b+40=0,故b=-40/25=-8/5.
即a=19/5,b=-8/5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询