13。
先算逻辑地址:
逻辑地址:8*1024=2^3*2^10=2^13(所以逻辑地址的后13位为“页内地址”,又叫“页内偏移量”,或“页内位移”及有效位)
再算物理地址:
物理地址:32*1024=2^5*2^10=2^15
所以最后的就是逻辑有效位是13;物理有效位是15
扩展资料:
逻辑地址由两个16位的地址分量构成,一个为段基值,另一个为偏移量。两个分量均为无符号数编码。 这样该存储单元的地址就可以用段基址(段地址)和段内偏移量(偏移地址)来表示,段基址确定它所在的段居于整个存储空间的位置,偏移量确定它在段内的位置,这种地址表示方式称为逻辑地址,通常表示为段地址:偏移地址的形式。
参考资料来源:百度百科-逻辑地址
13
首先先算逻辑地址:
逻辑地址:8*1024=2^3*2^10=2^13(所以逻辑地址的后13位为“页内地址”,又叫“页内偏移量”,或“页内位移”及有效位)
再算物理地址:
物理地址:32*1024=2^5*2^10=2^15
所以最后的就是逻辑有效位是13;物理有效位是15
扩展资料
产生背景追根求源,Intel的8位机8080CPU,数据总线(DB)为8位,地址总线(AB)为16位。那么这个16位地址信息也是要通过8位数据总线来传送,也是要在数据通道中的暂存器,以及在CPU中的寄存器和内存中存放的,但由于AB正好是DB的整数倍,故不会产生矛盾!
但当上升到16位机后,Intel8086/8088CPU的设计由于当年IC集成技术和外封装及引脚技术的限制,不能超过40个引脚。但又感觉到8位机原来的地址寻址能力2^16=64KB太少了,但直接增加到16的整数倍即令AB=32位又是达不到的。
故而只能把AB暂时增加4条成为20条。则2^20=1MB的寻址能力已经增加了16倍。但此举却造成了AB的20位和DB的16位之间的矛盾,20位地址信息既无法在DB上传送,又无法在16位的CPU寄存器和内存单元中存放。于是应运而生就产生了CPU段结构的原理。