展开全部
展开,得:
a²+b²+c²+2ab+2bc+2ac=3a²+3b²+3c²
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
则:a=bc=
此三角形为等边三角形。
a²+b²+c²+2ab+2bc+2ac=3a²+3b²+3c²
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
则:a=bc=
此三角形为等边三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立。
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
所以是等边三角形
2a^2+2b^2+2c^2-2ab-2bc-2ac=0
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立。
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c
所以是等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3(a^2+b^2+c^2)=a^2+b^2+c^2+2ac+2bc+2ca
2(a^2+b^2+c^2)-(2ac+2bc+2ca)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
a=b=c所以是等边三角形
2(a^2+b^2+c^2)-(2ac+2bc+2ca)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
a=b=c所以是等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(a+b+c)^2=3(a^2+b^2+c^2)
a^2+b^2+c^2=ab+bc+ac
(a-b)^2+(b-c)^2+(a-c)^2=2(a^2+b^2+c^2)-2ab-2ac-2bc=2(ab+bc+ac)-)-2ab-2ac-2bc=0
所以a=b.b=c.a=c
即a=b=c
所以为等边三角形
a^2+b^2+c^2=ab+bc+ac
(a-b)^2+(b-c)^2+(a-c)^2=2(a^2+b^2+c^2)-2ab-2ac-2bc=2(ab+bc+ac)-)-2ab-2ac-2bc=0
所以a=b.b=c.a=c
即a=b=c
所以为等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询