高斯消元法是什么意思?看不懂…

越详细越好…最好带例子分析…高分求教!... 越详细越好…最好带例子分析…高分求教! 展开
feidao2010
推荐于2017-09-28 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。高斯消元法可以用在电脑中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。一些极大的方程组通常会用叠代法来解决。亦有一些方法特地用来解决一些有特别排列的系数的方程组。
 高斯消元法可用来找出下列方程组的解或其解的限制:
  2x + y - z = 8 (L1)
  -3x - y + 2z = -11 (L2)
  -2x + y + 2z = -3 (L3)
  这个算法的原理是:
  首先,要将L1 以下的等式中的x 消除,然后再将L2 以下的等式中的y 消除。这样可使整个方程组变成一个三角形似的格式。之后再将已得出的答案一个个地代入已被简化的等式中的未知数中,就可求出其余的答案了。
  在刚才的例子中,我们将3/2 L1和L2相加,就可以将L2 中的x 消除了。然后再将L1 和L3相加,就可以将L3 中的x 消除。
  我们可以这样写:
  L2 + 3/2 L1→ L2
  L3 + L1 → L3
  结果就是:
  2x + y - z = 8
  1/2 y + 1/2 z = 1
  2y + z = 5
  现在将 − 4L2 和L3 相加,就可将L3 中的y 消除:
  L3 + -4 L2 → L3
  其结果是:
  2x + y - z = 8
  1/2y + 1/2z = 1
  -z = 1
  这样就完成了整个算法的初步,一个三角形的格式(指:变量的格式而言,上例中的变量各为3,2,1个)出现了。
  第二步,就是由尾至头地将已知的答案代入其他等式中的未知数。第一个答案就是:
  z = -1
  然后就可以将z 代入L2 中,立即就可得出第二个答案:
  y = 3
  之后,将z 和y 代入L1 之中,最后一个答案就出来了:
  x = 2
  就是这样,这个方程组就被高斯消元法解决了。
  这种算法可以用来解决所有线性方程组。即使一个方程组不能被化为一个三角形的格式,高斯消元法仍可找出它的解。例如在第一步化简后,L2 及L3 中没有出现任何y ,没有三角形的格式,照着高斯消元法而产生的格式仍是一个行梯阵式。这情况之下,这个方程组会有超过一个解,当中会有至少一个变量作为答案。每当变量被锁定,就会出现一个解。
  通常人或电脑在应用高斯消元法的时候,不会直接写出方程组的等式来消去未知数,反而会使用矩阵来计算。以下就是使用矩阵来计算的例子:
  2 1 -1 8
  -3 -1 2 -11
  -2 1 2 -3
  跟着以上的方法来运算,这个矩阵可以转变为以下的样子:
  2 1 -1 8
  0 1/2 1/2 1
  0 0 -1 1
  这矩阵叫做“行梯阵式”。
  最后,可以利用同样的算法产生以下的矩阵,便可把所得出的解或其限制简明地表示出来:
  1 0 0 2
  0 1 0 3
  0 0 1 -1
  最后这矩阵叫做“简化行梯阵式”,亦是高斯-约当消元法指定的步骤。

参考资料: http://baike.baidu.com/view/33268.htm

425524763
2012-04-17 · TA获得超过344个赞
知道小有建树答主
回答量:187
采纳率:0%
帮助的人:198万
展开全部
就是给你N个含有N个未知数的等式
比如:给你3个未知数和3个等式。
3x1+5x2+x3=4
x1+x2-2x3=3
2x1-4x2+x3=5

使用高斯消元能够求出一组x1、x2、x3满足以上等式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式