如图,在Rt△ABC中,角BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角如图放置,使三角板斜边的
两个端点分别与A、D重合,连结BE、EC。(1)求证:BE=CE(2)求证BE⊥EC拜托帮帮忙...
两个端点分别与A、D重合,连结BE、EC。(1)求证:BE=CE
(2)求证BE⊥EC
拜托帮帮忙 展开
(2)求证BE⊥EC
拜托帮帮忙 展开
展开全部
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
又∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
证毕
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
又∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:证明∵△AED为等腰直角三角形,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
又∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
证毕
希望对你有帮助!
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= 1/2AC,
又∵AC=2AB,
∴AB=AD=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠DEC,
∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,
∴BE⊥EC.
∴BE=EC且BE⊥EC
证毕
希望对你有帮助!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询