已知函数f(x)=4cossin(x+π/6)-1 20
2个回答
展开全部
f(x)=4cosxsin(x+π/6)-1
=4cosx(√3/2sinx+1/2cosx)-1
=2√3sinx+2cos^2x-1
=√3sin2x+cos2x
= 2sin(2x+π/6)
x∈[-π/6,π/4],则(2x+π/6)∈[-π/6,2π/3]
画个单位圆,一比划就出来了
所以f(x)最大值为2,最小值为-1最小正周期为π
=4cosx(√3/2sinx+1/2cosx)-1
=2√3sinx+2cos^2x-1
=√3sin2x+cos2x
= 2sin(2x+π/6)
x∈[-π/6,π/4],则(2x+π/6)∈[-π/6,2π/3]
画个单位圆,一比划就出来了
所以f(x)最大值为2,最小值为-1最小正周期为π
追问
请问该怎样利用单位元解题呢?具体说说,谢谢了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询