1个回答
展开全部
解:^ 表示乘方
原式=(3-1)(3+1)(3²+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1 反复运用平方差公式
=(3²-1)(3²+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^8-1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^16-1)(3^16+1)(3^32+1)+1
=(3^32-1)(3^32+1)+1
=3^64-1+1
=3^64
原式=(3-1)(3+1)(3²+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1 反复运用平方差公式
=(3²-1)(3²+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^4-1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^8-1)(3^8+1)(3^16+1)(3^32+1)+1
=(3^16-1)(3^16+1)(3^32+1)+1
=(3^32-1)(3^32+1)+1
=3^64-1+1
=3^64
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询