一元线性回归模型是干什么用的 5
4个回答
展开全部
一元线性回归模型有很多实际用途。分为以下两大类:
1.如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
2.给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
一元线性回归模型表示如下:
yt = b0 + b1 xt +ut (1) 上式表示变量yt 和xt之间的真实关系。其中yt 称作被解释变量(或相依变量、因变量),xt称作解释变量(或独立变量、自变量),ut称作随机误差项,b0称作常数项(截距项),b1称作回归系数。
在模型 (1) 中,xt是影响yt变化的重要解释变量。b0和b1也称作回归参数。这两个量通常是未知的,需要估计。t表示序数。当t表示时间序数时,xt和yt称为时间序列数据。当t表示非时间序数时,xt和yt称为截面数据。ut则包括了除xt以外的影响yt变化的众多微小因素。ut的变化是不可控的。上述模型可以分为两部分。(1)b0 +b1 xt是非随机部分;(2)ut是随机部分。
1.如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
2.给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
一元线性回归模型表示如下:
yt = b0 + b1 xt +ut (1) 上式表示变量yt 和xt之间的真实关系。其中yt 称作被解释变量(或相依变量、因变量),xt称作解释变量(或独立变量、自变量),ut称作随机误差项,b0称作常数项(截距项),b1称作回归系数。
在模型 (1) 中,xt是影响yt变化的重要解释变量。b0和b1也称作回归参数。这两个量通常是未知的,需要估计。t表示序数。当t表示时间序数时,xt和yt称为时间序列数据。当t表示非时间序数时,xt和yt称为截面数据。ut则包括了除xt以外的影响yt变化的众多微小因素。ut的变化是不可控的。上述模型可以分为两部分。(1)b0 +b1 xt是非随机部分;(2)ut是随机部分。
展开全部
不管是一元线性回归还是多元性性回归,他们的目的就是求出因变量和一个或多个自变量的关系的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一元线性回归模型是进行分析预测的。它可以计量被解释变量有哪些主要的影响因素,对其进行分析,然后采取相应对策,给出建议,使之更好fazhan
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用已知的数据或者图像来求出它的函数解析式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询