求中考几何难题 探索类 证明都行 越难越好 gljisagod@126.com
2个回答
展开全部
1.(北京市)在□ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1).
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连结EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1,判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2,判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB= ,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
2.(北京市)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),
C(0, ),延长AC到点D,使CD= AC,过D点作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线 将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为 轴上一点,点P从直线y=kx+b与 轴的交点出发,先沿 轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)
3.(天津市)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定 的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B′′,且使B′′D∥OB,求此时点C的坐标.
4.(天津市)已知函数y1=x,y2=x 2+bx+c,α,β为方程y1-y2=0的两个根,点M(1,T)在函数y2的图象上.
(Ⅰ)若α= ,β= ,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为 时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.
5.(上海市)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥ 轴(如图所示).点B与点A关于原点对称,直线y=x+b( 为常数)经过点B,且与直线CM相交于点D,联结OD.
(1)求b的值和点D的坐标;
(2)设点P在 轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C点重合)时,连结EP1,将线段EP1绕点E逆时针旋转90°得到线段EG1,判断直线FG1与直线CD的位置关系并加以证明;
②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2,判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB= ,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
2.(北京市)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),
C(0, ),延长AC到点D,使CD= AC,过D点作DE∥AB交BC的延长线于点E.
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线 将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为 轴上一点,点P从直线y=kx+b与 轴的交点出发,先沿 轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)
3.(天津市)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定 的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B′′,且使B′′D∥OB,求此时点C的坐标.
4.(天津市)已知函数y1=x,y2=x 2+bx+c,α,β为方程y1-y2=0的两个根,点M(1,T)在函数y2的图象上.
(Ⅰ)若α= ,β= ,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为 时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.
5.(上海市)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥ 轴(如图所示).点B与点A关于原点对称,直线y=x+b( 为常数)经过点B,且与直线CM相交于点D,联结OD.
(1)求b的值和点D的坐标;
(2)设点P在 轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.
追问
图没有 数据也有没显示的 你告诉我哪个地方的哪年的题也可以
追答
已经发到你邮箱了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询