小学三年级数学下册知识点梳理 5
展开全部
一、 植树问题:
这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:
沿线段植树
棵树=总路程÷株距+1
棵树=段数+1
株距=总路程÷(棵树-1)
总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
棵树=段数
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
二、分数和百分数的应用
1 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
三、度量
一、 长度
(一) 什么是长度
长度是一维空间的度量。
(二) 长度常用单位
公里(km) 、 米(m) 、 分米(dm)、 厘米(cm)、毫米(mm) 、 微米(um)
(三) 单位之间的换算
1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米
二、 面积
(一)什么是面积
面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位
平方毫米 、平方厘米 、 平方分米、平方米 、平方千米
(三)面积单位的换算
1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米
1公倾 =10000 平方米 , 1平方公里 =100 公顷
三、 体积和容积
(一)什么是体积、容积
体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(二)常用单位
1、 体积单位
立方米 、 立方分米、立方厘米
2 、容积单位: 升、毫升
(三)单位换算
(1) 体积单位
1立方米=1000立方分米
1立方分米=1000立方厘米
(2) 容积单位
1升=1000毫升
1升=1立方米
1毫升=1立方厘米
四、 质量
(一)什么是质量
质量,就是表示表示物体有多重。
(二)常用单位
吨 :t 千克: kg 克: g
(三)常用换算
一吨=1000千克
1千克=1000克
五、 时间
(一)什么是时间
是指有起点和终点的一段时间
(二)常用单位
世纪、 年 、 月 、 日 、 时 、 分、 秒
(三)单位换算
1世纪=100年
1年=365天 (平年)
1年=366天 (闰年)
一、三、五、七、八、十、十二是大月, 大月有31 天
四、六、九、十一是小月,小月有30天
平年2月有28天, 闰年2月有29天
1天= 24小时
1小时=60分
1分=60秒
六、 货币
(一)什么是货币
货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。
(二)常用单位
元 、 角 、 分
(三)单位换算
1元=10角
1角=10分
这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:
沿线段植树
棵树=总路程÷株距+1
棵树=段数+1
株距=总路程÷(棵树-1)
总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
棵树=段数
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
二、分数和百分数的应用
1 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
三、度量
一、 长度
(一) 什么是长度
长度是一维空间的度量。
(二) 长度常用单位
公里(km) 、 米(m) 、 分米(dm)、 厘米(cm)、毫米(mm) 、 微米(um)
(三) 单位之间的换算
1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米
二、 面积
(一)什么是面积
面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位
平方毫米 、平方厘米 、 平方分米、平方米 、平方千米
(三)面积单位的换算
1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米
1公倾 =10000 平方米 , 1平方公里 =100 公顷
三、 体积和容积
(一)什么是体积、容积
体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(二)常用单位
1、 体积单位
立方米 、 立方分米、立方厘米
2 、容积单位: 升、毫升
(三)单位换算
(1) 体积单位
1立方米=1000立方分米
1立方分米=1000立方厘米
(2) 容积单位
1升=1000毫升
1升=1立方米
1毫升=1立方厘米
四、 质量
(一)什么是质量
质量,就是表示表示物体有多重。
(二)常用单位
吨 :t 千克: kg 克: g
(三)常用换算
一吨=1000千克
1千克=1000克
五、 时间
(一)什么是时间
是指有起点和终点的一段时间
(二)常用单位
世纪、 年 、 月 、 日 、 时 、 分、 秒
(三)单位换算
1世纪=100年
1年=365天 (平年)
1年=366天 (闰年)
一、三、五、七、八、十、十二是大月, 大月有31 天
四、六、九、十一是小月,小月有30天
平年2月有28天, 闰年2月有29天
1天= 24小时
1小时=60分
1分=60秒
六、 货币
(一)什么是货币
货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。
(二)常用单位
元 、 角 、 分
(三)单位换算
1元=10角
1角=10分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |