展开全部
证明:
因为CD是RT三角形ABC的斜裂帆中边AB上的高
所以∠CDA=∠CDB=90,∠ABC+∠BCD=90,
因为∠ACB=90
所以∠ACD+∠BCD=90,
所以∠ACD=∠ABC,
所以△ACD∽△CBD
所肆山以AC/BC=AD/CD=CD/BD
所以(AC/BC)^2=(AD/轿辩CD)*(CD/BD)=AD/BD,
即AC^2/BC^2=AD/BD
所以AC^2/AD=BC^2/BD
两边同乘以AB,得,
(AB/AD)*AC^2=(AB/BD)*BD^2①
因为DE⊥AC,BC⊥AC,
所以DE∥BC②
所以AB/AD=AC/AE,
同理:AB/BD=BC/BF③,
②,③代人到①,得,
(AC/AE)*AC^2=(BC/BF)*BC^2
即AC^3/AE=BC^3/BF
所以AC^3/BC^3=AE/BF
因为CD是RT三角形ABC的斜裂帆中边AB上的高
所以∠CDA=∠CDB=90,∠ABC+∠BCD=90,
因为∠ACB=90
所以∠ACD+∠BCD=90,
所以∠ACD=∠ABC,
所以△ACD∽△CBD
所肆山以AC/BC=AD/CD=CD/BD
所以(AC/BC)^2=(AD/轿辩CD)*(CD/BD)=AD/BD,
即AC^2/BC^2=AD/BD
所以AC^2/AD=BC^2/BD
两边同乘以AB,得,
(AB/AD)*AC^2=(AB/BD)*BD^2①
因为DE⊥AC,BC⊥AC,
所以DE∥BC②
所以AB/AD=AC/AE,
同理:AB/BD=BC/BF③,
②,③代人到①,得,
(AC/AE)*AC^2=(BC/BF)*BC^2
即AC^3/AE=BC^3/BF
所以AC^3/BC^3=AE/BF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询