将20个大小相同的小球放入编号为1,2,3的三个盒子中,要求每个盒子内的球数不小于该盒子的编号数,求共有
展开全部
解:转化为隔板法。
设三个盒子中装的数分别是a、b、c。则a+b+c=20。其中字母的取值范围必须都是≥1,才能用隔板法,所以要转化下。
a+b+c=20
a+(b-1)+(c-2)=17
x+y+z=17
问题转化为17个球放到三个盒中,每个盒中至少一个。
这样想,把17个球摆好,中间放两个板子,这样就分成了三堆了
17个板,中间有16个空,放两个板子,答案是C16,2=120种
设三个盒子中装的数分别是a、b、c。则a+b+c=20。其中字母的取值范围必须都是≥1,才能用隔板法,所以要转化下。
a+b+c=20
a+(b-1)+(c-2)=17
x+y+z=17
问题转化为17个球放到三个盒中,每个盒中至少一个。
这样想,把17个球摆好,中间放两个板子,这样就分成了三堆了
17个板,中间有16个空,放两个板子,答案是C16,2=120种
追问
是20个小球。
追答
20个球,中间隔了19个位置,把球分3份,相当于隔两个板,故17
展开全部
先把每个盒子里放入编号个球,即1号盒子放1个球,2号盒子放2个球,3号盒子放3个球。共有1种
剩下的14个球就可以随便放了,用插空法把它们分为3组即可,共有16个空位置,所以有C(16,2)种
所以一共有:C(16,2)=120种
剩下的14个球就可以随便放了,用插空法把它们分为3组即可,共有16个空位置,所以有C(16,2)种
所以一共有:C(16,2)=120种
更多追问追答
追问
这个结果太大了!小球没有区别呀!
追答
恩,刚刚看错了,看成小球有区别了,现在改了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三个盒子先分别放1,2,3个,还剩14个随便放,相当于17个位置插2个隔板,一共有16C2=120种
追问
为什么是17个位置?
追答
因为14个可以有盒子不放球,要用插板的方法必须要每个盒子至少有一个球,所以要先加3个球,变成17个,插2个板
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
方法一:先在2,3号球分别放入1,2个球,那么还剩17个球,问题转化为:
把17个小球三个盒子中,每个盒子至少1球,共有多少种?
典型 “挡板法”问题!
17个球排成一列,有16个空隙,插入2块挡板。
C(16,2)=120
方法二:根据题意,先在编号为2的盒子中依次放入1个小球,编号为3的盒子中依次放入2个小球,还剩余17个小球,只需将这17个小球放入3个小盒,每个小盒至少一个即可,
17个小球之间共16个空位,从中选2个,插入挡板即可,则有C162=120种不同的放法,
故答案为:120.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |