如图,AE是圆O的直径,DF切圆O于B,AD⊥DF于D,EF⊥DF于F
2个回答
展开全部
连接OB,可证T型OEFB与OADB及EFAD都相似且OB//AD//EF
则OEFB与OADB的面积合等于AEFD的面积
设OEFB的高为a,则OADB的高也是a,AEFD的高为2a
((EF+OB)*a/2)+((AD+OB)*a/2)=(AD+EF)*2a/2
化简即得EF+AD=AE
假设AD=x,则AE=x+EF,
周长=1+4+x+x+1=2x+6
OB=(x+1)/2
根据梯形相似,得EF/OB=OB/AD
1/((x+1)/2)=((x+1)/2)/x
化简得x=1
所以周长=8
则OEFB与OADB的面积合等于AEFD的面积
设OEFB的高为a,则OADB的高也是a,AEFD的高为2a
((EF+OB)*a/2)+((AD+OB)*a/2)=(AD+EF)*2a/2
化简即得EF+AD=AE
假设AD=x,则AE=x+EF,
周长=1+4+x+x+1=2x+6
OB=(x+1)/2
根据梯形相似,得EF/OB=OB/AD
1/((x+1)/2)=((x+1)/2)/x
化简得x=1
所以周长=8
展开全部
连接OB,可证T型OEFB与OADB及EFAD都相似且OB//AD//EF
则OEFB与OADB的面积合等于AEFD的面积
设OEFB的高为a,则OADB的高也是a,AEFD的高为2a
((EF+OB)*a/2)+((AD+OB)*a/2)=(AD+EF)*2a/2
化简即得EF+AD=AE
假设AD=x,则AE=x+EF,
周长=1+4+x+x+1=2x+6
OB=(x+1)/2
根据梯形相似,得EF/OB=OB/AD
1/((x+1)/2)=((x+1)/2)/x
化简得x=1
所以周长=8
则OEFB与OADB的面积合等于AEFD的面积
设OEFB的高为a,则OADB的高也是a,AEFD的高为2a
((EF+OB)*a/2)+((AD+OB)*a/2)=(AD+EF)*2a/2
化简即得EF+AD=AE
假设AD=x,则AE=x+EF,
周长=1+4+x+x+1=2x+6
OB=(x+1)/2
根据梯形相似,得EF/OB=OB/AD
1/((x+1)/2)=((x+1)/2)/x
化简得x=1
所以周长=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询