如图,平面直角坐标系中,矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD
如图,平面直角坐标系中,矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.(...
如图,平面直角坐标系中,矩形ABCO的边OA在y正半轴上,OC在x正半轴上,点D是线段OC上一点,过点D作DE⊥AD交直线BC于点E,以A、D、E为顶点作矩形ADEF.
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(0,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,抛物线y=ax2+bx+c过A、F、B三点,求点F的坐标及a、b、c的值;
②若点D(k,0)是线段OC上任意一点,点F是否还在①中所求的抛物线上?如果在,请说明理由;如果不在,请举反例说明;
(3)若点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否也存在一条抛物线,使得点F都落在该抛物线上?若存在,请直接用含m、n的代数式表示该抛物线;若不存在,请说明理由. 展开
(1)求证:△AOD∽△DCE;
(2)若点A坐标为(0,4),点C坐标为(7,0).
①当点D的坐标为(5,0)时,抛物线y=ax2+bx+c过A、F、B三点,求点F的坐标及a、b、c的值;
②若点D(k,0)是线段OC上任意一点,点F是否还在①中所求的抛物线上?如果在,请说明理由;如果不在,请举反例说明;
(3)若点A的坐标是(0,m),点C的坐标是(n,0),当点D在线段OC上运动时,是否也存在一条抛物线,使得点F都落在该抛物线上?若存在,请直接用含m、n的代数式表示该抛物线;若不存在,请说明理由. 展开
1个回答
展开全部
(1) ∠AOD = ∠DCE = ∠ADE = 90°
∠CDE + ∠CED = 90°, ∠OAD + ∠ODA = 90°
∠ODA + ∠CDE = 180° - ∠ADE = 180° - 90° = 90°
即∠CDE和∠ODA互余,∠CDE和∠CED也互余, ∠ODA = ∠CED
△AOD∽△DCE
(2) B(7, 4)
①OD = 5, CD = 2, OA = 4
△AOD∽△DCE, CE/OD = CD/OA, CE/2 = 5/4
CE = 5/2
E(7, 5/2)
从F向AB做垂线,垂足G,显然△AFG与△DCE全等。F的横坐标=DC=2, F的纵坐标=A的纵坐标+GF=4+CE= 4+ 5/2 = 13/2
F(2, 13/2)
过A: c = 4
过B: 49a + 7b + c = 4
过F: 4a + 2b + c = 13/2
解为:a = -1/4, b = 7/4, c = 4
②与①类似,DC= 7-k, OD = k
△AOD∽△DCE, CE/OD = CD/OA, CE/k = (7 - k)/4
CE = k(7-k)/4
从F向AB做垂线,垂足G,显然△AFG与△DCE全等。F的横坐标=DC=7-k, F的纵坐标=A的纵坐标+GF=4+CE= 4+ k(7-k)/4
F(7-k, 4+ k(7-k)/4)
代入抛物线方程: 4+ k(7-k)/4 = -(7-k)²/4 + 7(7 - k)/4 + 4
k(7-k)/4 = -(7-k)²运梁塌/4 + 7(7 - k)/4
k(7-k) = -(7-k)² + 7(7 - k)
k(7-k) = (7 - k)(-7+k +7)
k(7-k) = k(7-k)
恒成立(注:k = 7时旁圆,渣咐C与D重合,无意义)
(3)存在, y = -x²/4 + nx/m + m
∠CDE + ∠CED = 90°, ∠OAD + ∠ODA = 90°
∠ODA + ∠CDE = 180° - ∠ADE = 180° - 90° = 90°
即∠CDE和∠ODA互余,∠CDE和∠CED也互余, ∠ODA = ∠CED
△AOD∽△DCE
(2) B(7, 4)
①OD = 5, CD = 2, OA = 4
△AOD∽△DCE, CE/OD = CD/OA, CE/2 = 5/4
CE = 5/2
E(7, 5/2)
从F向AB做垂线,垂足G,显然△AFG与△DCE全等。F的横坐标=DC=2, F的纵坐标=A的纵坐标+GF=4+CE= 4+ 5/2 = 13/2
F(2, 13/2)
过A: c = 4
过B: 49a + 7b + c = 4
过F: 4a + 2b + c = 13/2
解为:a = -1/4, b = 7/4, c = 4
②与①类似,DC= 7-k, OD = k
△AOD∽△DCE, CE/OD = CD/OA, CE/k = (7 - k)/4
CE = k(7-k)/4
从F向AB做垂线,垂足G,显然△AFG与△DCE全等。F的横坐标=DC=7-k, F的纵坐标=A的纵坐标+GF=4+CE= 4+ k(7-k)/4
F(7-k, 4+ k(7-k)/4)
代入抛物线方程: 4+ k(7-k)/4 = -(7-k)²/4 + 7(7 - k)/4 + 4
k(7-k)/4 = -(7-k)²运梁塌/4 + 7(7 - k)/4
k(7-k) = -(7-k)² + 7(7 - k)
k(7-k) = (7 - k)(-7+k +7)
k(7-k) = k(7-k)
恒成立(注:k = 7时旁圆,渣咐C与D重合,无意义)
(3)存在, y = -x²/4 + nx/m + m
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询