如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB得的中点E,连接CD和CE。求证:CD=2CE。

慕野清流
2012-05-19 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2338万
展开全部
延长CE至F,使EF=CE,连接FA
因为 AE=BE,角AEF=角BEC
所以 三角形AEF全等于三角形BEC
所以 角F=角FCB
所以 AF//BC
所以 角FAC=180-角ACB
因为 角DBC=180-角ABC,角ACB=角ABC
所以 角FAC=角DBC
因为 三角形AEF全等于三角形BEC
所以 FA=BC
因为 角ACB=角ABC
所以 AB=AC
因为 BD=AB
所以 AC=BD
因为 FA=BC,角FAC=角DBC
所以 三角形FAC全等于三角形DBC
所以 CD=CF
因为 FE=CE
所以 CD=2CE
1322828697
2012-05-19
知道答主
回答量:2
采纳率:0%
帮助的人:3215
展开全部
图呢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式