证明 |sinA-sinB|=<|A-B|
解法:f(x)=sinx,f(x)连续可导[f(A)-f(B)]/(A-B)=f'(c)=cos(c),|cos(c)|=<1then|[f(A)-f(B)]/(A-B)...
解法:
f(x)=sinx, f(x)连续可导
[f(A)-f(B)]/(A-B)=f'(c)=cos(c), |cos(c)|=<1
then |[f(A)-f(B)]/(A-B) |=|f(A)-f(B)| / |A-B|=|cos(c)|=<1
so |sinA-sinB|=<|A-B| 展开
f(x)=sinx, f(x)连续可导
[f(A)-f(B)]/(A-B)=f'(c)=cos(c), |cos(c)|=<1
then |[f(A)-f(B)]/(A-B) |=|f(A)-f(B)| / |A-B|=|cos(c)|=<1
so |sinA-sinB|=<|A-B| 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询