如图,点O为正方形ABCD的对角线的交点,点E、F分别在DA、CD的延长线上,且AE=DF,连BE、AF.延长FA交BE于G
补充(1)求证;BE⊥AF;
(2)延长FA交BE于G,连OG,求∠OGF的度数;
(3)在(2)中,若AE=√5,AB=2√5,求OG的长。
解:
(1)在RT△ABE和RT△ADF中
∵AE=DF AB=AD
∴△ABE≌△ADF
∴∠A1=∠B
∠A1=∠A2(对顶)
∠A2+∠E=90°
∴BE⊥FG(AF的延长线)即BE⊥AF
(2)连接OE 并在AF上取FH=EG得H点
在△OAE和△ODF中
AE=DF OA=OD ∠OAE=∠ODC(都是90+45)
∴△OAE≌△ODF
∴OE=OF ∠3=∠4
∵OA⊥OD ∴OE⊥OF
∴△EOF是等腰直角三角形
∴OG⊥OH(相当于随AE旋转了90)
∴△OGH也是等腰直角三角形
∴∠OGF=∠OHG=45°
(3)若AE=√5,AB=2√5,求OG的长。
在RT△AEG和RT△ABE中,
EG/AE=AE/BE (BE=√(AE²+AB²)=√(5+20)=5
∴EG=AE²/BE=5/5=1
又GA/AB=EG/AE
∴GA=AB*EG/AE =2√5*(1/ √5)=2
∴GH=GF-HF=(AF+AG)-HF=(BE+AG)-EG=(5+2)-1=6
∴OG=(√2)/2*HG=3√2
∴∠E=∠AFD
∵∠EAG=∠DAF(对顶)
∴∠AGE=∠ADF=90°
∴BE⊥FG(AF的延长线)即BE⊥AF
(2)连接OB
∵∠BGA=∠BOA=90°
∴B、O、A、G四点共圆
∴∠OGA=∠OBA=45°(∠OGA和∠OGF同角)
(3)过O点作OM和ON分别垂直于⊥GF和CD,
OF=√(ON²+NF²)=√(20+5)=5
BE=√(AE²+AB²)=√(5+20)=5
又GA/AB=AE/BE
∴GA=AB*AE/BE =2√5*√5/5=2,GF=GA+AF=7
OG²=OH²+GH²=2GH² (1)
OG²-GH²=OF²-(GF-GH)²
=5²-(7-GH)² (2)
解得:OG=3√2
∴∠E+∠EAG=∠E+∠DAF=∠E+∠ABE=90°, 则AG⊥BG
∵OA⊥OB
∴OAGB四点共圆
∴∠OGF=∠OBA=45度
(3)过C,O作FG的垂线,垂足分别为M,N
DF=AE=√5,AD=AB=2√5,勾股定理求得AF=5
CF=CD+DF=2√5+√5=3√5
易证△CFM∽△AFD
∴CF/AF=CM/AD, 3√5/5=CM/2√5, CM=6
∵AO=OC,ON∥CM(垂直于同一直线的两直线平行)
∴ON=CM/2=3 ∵∠OGF=45°
∴GN=ON=3, 勾股定理求得OG=3√2