高等数学题目
1个回答
展开全部
设圆锥底面半径为 R,高为 h, 则
R^2/(R^2+h^2) = r^2/(h-r)^2, 得野枣历 h = 2rR^2/(R^2-r^2)
V = (π/3)hR^2 = (2πr/3) R^4/(R^2-r^2)
dV/dR = (2πr/3) [4R^3(R^2-r^2) - 2R^5]/(R^2-r^2)^2
dV/dR = 0, 得 R^2 = 2r^2, 惟一驻点 R = r√颂搜2,
因系实际问题,当圆锥底面半径为 R = r√岩拦2 时, 圆锥体积最小。
R^2/(R^2+h^2) = r^2/(h-r)^2, 得野枣历 h = 2rR^2/(R^2-r^2)
V = (π/3)hR^2 = (2πr/3) R^4/(R^2-r^2)
dV/dR = (2πr/3) [4R^3(R^2-r^2) - 2R^5]/(R^2-r^2)^2
dV/dR = 0, 得 R^2 = 2r^2, 惟一驻点 R = r√颂搜2,
因系实际问题,当圆锥底面半径为 R = r√岩拦2 时, 圆锥体积最小。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询