解题步骤如下:
3x=x+100
3x-x=100
2x=100
x=50
扩展资料
只有一个未知数的是一元一次方程:
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。
例如在丢番图问题中,仅使用整式可能无从下手,而通过一元一次方程寻找作为等量关系的“年龄”,则会使问题简化。
一元一次方程也可在数学定理的证明中发挥作用,如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。
3x=x+100的解:x=50。
解答过程如下:
3x=x+100(原式)
3x-x=100(移项,把含有x的项都移到等式的左边,常数项都移到等式的右边)
2x=100(合并同类项,3x-x都是含有x的项,3x-x=(3-1)x)
x=50(化系数为1,等式两边同时除以2)
扩展资料:
一元一次方程通常可用于做数学应用题,也可应用于物理、化学的计算。
如在生产生活中,通过已知一定的液体密度和压强,通过
公式代入解方程,进而计算液体深度的问题。例如计算大气压强约等于多高的水柱产生的压强,已知大气压约为100000帕斯卡,水的密度约等于1000千克每立方米,g约等于10米每二次方秒(10牛每千克),则可设水柱高度为h米,列方程得1000*10h=100000,解得h=10,即可得知大气压强约等于10米的水柱所产生的压强。
3x=x+100
解:
3x=x+100
3x-x=100
2x=100
x=50
方法
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式
4、移项:将含未知数的项移到左边,常数项移到右边
扩展资料:
x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置。
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。
但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:元法,配方法,待定系数法)。
3x=100+x
3x-x=100
2x=100
x=100÷2
x=50
判断方程为一元一次方程。
解方程,教材推行的是消元法,即利用等式的性质,等号两边同时加、减、乘、除以(0除外)相同数,最后的目标是使一边只留下一个x。
扩展资料
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
3x=x+100解方程的步骤如下:
1、移项:
把含未知数的项移到等式的左边,常数项移到等式的右边,方程式变为:3x-x=100;
2、合并同类项:
方程式中的“3x”和“x”是同类项,可以合并为2x,方程式变为:2x=100;
3、进一步化简:
等式两边同时除以相同的数字,等号保持不变:2x÷2=100÷2,得到最终的结果为x=50。
扩展资料:
解方程常用的方法:
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式
4、移项:将含未知数的项移到左边,常数项移到右边
5、去括号:运用去括号法则,将方程中的括号去掉。
6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。