填写数字规律~

在一个边长为4N-2(N>=2)的正方形方格内,依次填入1到(4N-2)^2的数字,数字不重复每个数字填一次。使得横竖和两条对角线数字相加相等。... 在一个边长为4N-2(N>=2)的正方形方格内,依次填入1到(4N-2)^2的数字,数字不重复每个数字填一次。 使得横竖和两条对角线数字相加相等。 展开
匿名用户
2014-02-24
展开全部
哥们研究了下,不大懂,帮你找了个资料希望对你有用:幻方阵  幻方是什么呢?如右图就是一个幻方,即将n*n(n>=3)个数字放入n*n的方格内,使方格的各行、各列及对角线上各数字之各相等。
  8 1 6
  3 5 7
  4 9 2
  
  本数学模型于1999年9月26日构造。
  奇阶幻方
  当n为奇数时,我们称幻方为奇阶幻方。可以用Merzirac法与loubere法实现,根据我的研究,发现用国际象棋之马步也可构造出更为神奇的奇幻方,故命名为horse法。
  偶阶幻方
  当n为偶数时,我们称幻方为偶阶幻方。当n可以被4整除时,我们称该偶阶幻方为双偶幻方;当n不可被4整除时,我们称该偶阶幻方为单偶幻方。可用了Hire法、Strachey以及YinMagic将其实现,Strachey为单偶模型,我对双偶(4m阶)进行了重新修改,制作了另一个可行的数学模型,称之为Spring。YinMagic是我于2002年设计的模型,他可以生成任意的偶阶幻方。
  在填幻方前我们做如下约定:如填定数字超出幻方格范围,则把幻方看成是可以无限伸展的图形,如下图:
  Merzirac法生成奇阶幻方
  在第一行居中的方格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向下移一格继续填写。如下图用Merziral法生成的5阶幻方:
  17 24 1 8 15
  23 5 7 14 16
  4 6 13 20 22
  10 12 19 21 3
  11 18 25 2 9
  
  loubere法生成奇阶幻方
  在居中的方格向上一格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向上移二格继续填写。如下图用Louberel法生成的7阶幻方:
  30 39 48 1 10 19 28
  38 47 7 9 18 27 29
  46 6 8 17 26 35 37
  5 14 16 25 34 36 45
  13 15 24 33 42 44 4
  21 23 32 41 43 3 12
  22 31 40 49 2 11 20
  
  horse法生成奇阶幻方
  先在任意一格内放入1。向左走1步,并下走2步放入2(称为马步),向左走1步,并下走2步放入3,依次类推放到n。在n的下方放入n+1(称为跳步),再按上述方法放置到2n,在2n的下边放入2n+1。如下图用Horse法生成的5阶幻方:
  77 58 39 20 1 72 53 34 15
  6 68 49 30 11 73 63 44 25
  16 78 59 40 21 2 64 54 35
  26 7 69 50 31 12 74 55 45
  36 17 79 60 41 22 3 65 46
  37 27 8 70 51 32 13 75 56
  47 28 18 80 61 42 23 4 66
  57 38 19 9 71 52 33 14 76
  67 48 29 10 81 62 43 24 5
  
  一般的,令矩阵[1,1]为向右走一步,向上走一步,[-1,0]为向左走一步。则马步可以表示为2X+Y,{X∈{[1,0], [-1,0]},Y∈{[0,1], [0,-1]}}∪{Y∈{[1,0], [-1,0]},X∈{[0,1], [0,-1]}}。对于2X+Y相应的跳步可以为2Y,-Y,X,-Y,X,3X,3X+3Y。上面的的是X型跳步。Horse法生成的幻方为魔鬼幻方。
  Hire法生成偶阶幻方
  将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2。填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n行按n到1进行填写,对角线的方格内数字不变。如下所示为6阶填写方法:
  1 5 4 3 2 6
  6 2 3 4 5 1
  1 2 3 4 5 6
  6 5 3 4 2 1
  6 2 4 3 5 1
  1 5 4 3 2 6
  
  如下所示为8阶填写方法(转置以后):
  1 8 1 1 8 8 8 1
  7 2 2 2 7 7 2 7
  6 3 3 3 6 3 6 6
  5 4 4 4 4 5 5 5
  4 5 5 5 5 4 4 4
  3 6 6 6 3 6 3 3
  2 7 7 7 2 2 7 2
  8 1 8 8 1 1 1 8
  
  将A上所有数字分别按如下算法计算,得到B,其中b(i,j)=n×(a(i,j)-1)。则AT+B为目标幻方
  (AT为A的转置矩阵)。如下图用Hire法生成的8阶幻方:
  1 63 6 5 60 59 58 8
  56 10 11 12 53 54 15 49
  41 18 19 20 45 22 47 48
  33 26 27 28 29 38 39 40
  32 39 38 36 37 27 26 25
  24 47 43 45 20 46 18 17
  16 50 54 53 12 11 55 9
  57 7 62 61 4 3 2 64
  
  Strachey法生成单偶幻方
  将n阶单偶幻方表示为4m+2阶幻方。将其等分为四分,成为如下图所示A、B、C、D四个2m+1阶奇数幻方。
  A C
  D B
  A用1至2m+1填写成(2m+1)2阶幻方;B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方;C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方;D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;在A中间一行取m个小格,其中1格为该行居中1小格,另外m-1个小格任意,其他行左侧边缘取m列,将其与D相应方格内交换;B与C接近右侧m-1列相互交换。如下图用Strachey法生成的6阶幻方:
  35 1 6 26 19 24
  3 32 7 21 23 25
  31 9 2 22 27 20
  8 28 33 17 10 15
  30 5 34 12 14 16
  4 36 29 13 18 11
  
  Spring法生成以偶幻方
  将n阶双偶幻方表示为4m阶幻方。将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。
  先令a(i,j)=(i-1)*n+j,即第一行从左到可分别填写1、2、3、……、n;即第二行从左到可分别填写n+1、n+2、n+3、……、2n;…………之后进行对角交换。对角交换有两种方法:
  方法一;将左上区域i+j为偶数的与幻方内以中心点为对称点的右下角对角数字进行交换;将右上区域i+j为奇数的与幻方内以中心点为对称点的左下角对角数字进行交换。(保证不同时为奇或偶即可。)
  方法二;将幻方等分成m*m个4阶幻方,将各4阶幻方中对角线上的方格内数字与n阶幻方内以中心点为对称点的对角数字进行交换。
  如下图用Spring法生成的4阶幻方:
  16 2 3 13
  5 11 10 8
  9 7 6 12
  4 14 15 1
  
  YinMagic构造偶阶幻方
  先构造n-2幻方,之后将其中的数字全部加上2n-2,放于n阶幻方中间,再用本方法将边缘数字填写完毕。本方法适用于n>4的所有幻方,我于2002年12月31日构造的数学模型。YinMagic法可生成6阶以上的偶幻方。如下图用YinMagic法生成的6阶幻方:
  10 1 34 33 5 28
  29 23 22 11 18 8
  30 12 17 24 21 7
  2 26 19 14 15 35
  31 13 16 25 20 6
  9 36 3 4 32 27
  
  魔鬼幻方
  如将幻方看成是无限伸展的图形,则任何一个相邻的n*n方格内的数字都可以组成一个幻方。则称该幻方为魔鬼幻方。
  用我研究的Horse法构造的幻方是魔鬼幻方。如下的幻方更是魔鬼幻方,因为对于任意四个在两行两列上的数字,他们的和都是34。此幻方可用YinMagic方法生成。
  15 10 3 6
  4 5 16 9
  14 11 2 7
  1 8 13 12
  罗伯法:
  1居上行正中央,依次排开右上方。
  右出格时写最左,上出格时写最下.
  每逢几个落一行.(几个是几*几的方阵中的几)
  【幻方在高中数学中的考查】
  “幻方”易在高中数学《数列》一章中以找规律或开放题的形式对考生进行考察。通常以选择题为主。考察的内容比较简单,通常为求N阶幻方行、列、对角线(其实它们都是相等的)上的数之和。通常的方法是,从1一直加到N^2,再将得出的数除以N即可。
  如3阶幻方,则1+2+3+……+9=45,45/3=15,即f(3)=15
  同理,4阶幻方,则1+2+……+16=136,136/4=34,即f(4)=34你这题大概就是同4m+2的单偶幻方了,自己慢慢领悟吧.......我无奈了5555555
匿名用户
2014-02-24
展开全部
蜀道难,难于上青天! 想想啊,别关闭
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-02-24
展开全部
没答案。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式