已知函数f(x)=-x^3+ax^2-4在x=2处取得极值,若m,n属于[-1,1]则f(m)+f'(n)的最小值
1个回答
展开全部
f(x)=-x^3+ax^2-4
f'(x)=-3x^2+2ax
f'(2)=-12+4a=0
a=3
f(x)=-x^3+3x^2-4
f'(x)=-3x^2+6x
f(x)在x=2和x=0处有极点,
当-1≤x≤0时,f'(x)≤0,f(x)单调递减,
f(0)≤f(x)≤f(-1)
-4≤f(x)≤0;
当0≤x≤1时,f'(x)≥0,f'(x)单调递增,
f(0)≤f(x)≤f(1);
-4≤f(x)≤-2;
所以当m=0时,f(m)取最小值-4;
f''(x)=-6x+6
f'(x)在x=1处有极点,
当-1≤x≤1时,f''(x)≥0,f'(x)单调递增,-9≤f'(x)≤3;
所以当n=-1时f'(n)取最小值为-9.
所以
f(m)+f'(n)的最小值为-4-9=-13
f'(x)=-3x^2+2ax
f'(2)=-12+4a=0
a=3
f(x)=-x^3+3x^2-4
f'(x)=-3x^2+6x
f(x)在x=2和x=0处有极点,
当-1≤x≤0时,f'(x)≤0,f(x)单调递减,
f(0)≤f(x)≤f(-1)
-4≤f(x)≤0;
当0≤x≤1时,f'(x)≥0,f'(x)单调递增,
f(0)≤f(x)≤f(1);
-4≤f(x)≤-2;
所以当m=0时,f(m)取最小值-4;
f''(x)=-6x+6
f'(x)在x=1处有极点,
当-1≤x≤1时,f''(x)≥0,f'(x)单调递增,-9≤f'(x)≤3;
所以当n=-1时f'(n)取最小值为-9.
所以
f(m)+f'(n)的最小值为-4-9=-13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询