高中 数列求和 裂项法

 我来答
止恒钮罗
2019-09-20 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:764万
展开全部
你看看这个吧,希望对你有帮助。
裂项法求和
  这是分解与组合思想在数列求和中的具体应用.
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
通项分解(裂项)如:
  (1)1/n(n+1)=1/n-1/(n+1)
  (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
  (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
  (4)1/(√a+√b)=[1/(a-b)](√a-√b)
  (5)
n·n!=(n+1)!-n!
  [例1]
【分数裂项基本型】求数列an=1/n(n+1)
的前n项和.
  解:an=1/n(n+1)=1/n-1/(n+1)
(裂项)
  则
Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
  =
1-1/(n+1)
  =
n/(n+1)
  
[例2]
【整数裂项基本型】求数列an=n(n+1)
的前n项和.
  解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)
  则
Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)
  =
(n-1)n(n+1)/3
  小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
  注意:
余下的项具有如下的特点
  1余下的项前后的位置前后是对称的。
  2余下的项前后的正负性是相反的。
  易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)
  附:数列求和的常用方法:
  公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
  1、分组法求数列的和:如an=2n+3n
  2、错位相减法求和:如an=n·2^n
  3、裂项法求和:如an=1/n(n+1)
  4、倒序相加法求和:如an=
n
  5、求数列的最大、最小项的方法:
  ①
an+1-an=……
如an=
-2n2+29n-3
  ②
(an>0)
如an=
  ③
an=f(n)
研究函数f(n)的增减性
如an=
an^2+bn+c(a≠0)
  6、在等差数列
中,有关Sn
的最值问题——常用邻项变号法求解:
  (1)当
a1>0,d<0时,满足{an}的项数m使得Sm取最大值.
  (2)当
a1<0,d>0时,满足{an}的项数m使得Sm取最小值.
  在解含绝对值的数列最值问题时,注意转化思想的应用。
希望能解决您的问题。
铎素枝郁环
2020-01-05 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:25%
帮助的人:870万
展开全部
/(3n-2)(3n+1)
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)
只要是分式数列求和,可采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数。
裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧,

例子:

求和:1/2+1/6+1/12+1/20

=1/(1*2)+1/(2*3)+1/(3*4)1/(4*5)

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)

=1-1/5=4/5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
第溪齐白枫
2020-07-06 · TA获得超过3952个赞
知道大有可为答主
回答量:3133
采纳率:30%
帮助的人:422万
展开全部
裂项后,只要注意前面和后面各剩了多少项,裂项求和的问题一般就不会错了,呵呵!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式