数学题目,回答
28.(满分12分)已知:△ABC中,∠C>∠B,AE平分∠BAC。(1)如图①AD⊥BC于D,若∠C=70°,∠B=30°,请你用量角器直接量出∠DAE的度数;(2)若...
28.(满分12分)已知:△ABC中,∠C>∠B,AE平分∠BAC。
(1)如图①AD⊥BC于D,若∠C =70°,∠B =30°,请你用量角器直接量出∠DAE的度数;
(2)若△ABC中,∠B=α ,∠C=β(α< β),根据第一问的结果大胆猜想∠DAE与α、β间的等量关系,不必说理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的速度大小发生改变吗?说明理由。 展开
(1)如图①AD⊥BC于D,若∠C =70°,∠B =30°,请你用量角器直接量出∠DAE的度数;
(2)若△ABC中,∠B=α ,∠C=β(α< β),根据第一问的结果大胆猜想∠DAE与α、β间的等量关系,不必说理由;
(3)如图②所示,在△ABC中AD⊥BC,AE平分∠BAC,F是AE上的任意一点,过F作FG⊥BC于G,且∠B=40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
(4)在(3)的条件下,若F点在AE的延长线上(如图③),其他条件不变,则∠EFG的速度大小发生改变吗?说明理由。 展开
2个回答
展开全部
解:(1)∵∠C=70°,∠B=30°,
∴∠BAC=180°-(∠B+∠C)=180°-30°-70°=80°,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×80°=40°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠DAC=180°-90°-70°=20°,
∴∠DAE=∠CAE-∠CAD=40°-20°=20°;
(2)∠DAE=
1
2
β-
1
2
α,
理由是:∵∠C=β,∠B=α,
∴∠BAC=180°-(∠B+∠C)=180°-α-β,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×(180°-α-β)=90°-
1
2
α-
1
2
β,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=β,
∴∠DAC=180°-90°-β=90°-β,
∴∠DAE=∠CAE-∠CAD=90°-
1
2
α-
1
2
β-(90°-β)=
1
2
β-
1
2
α;
(3)∵∠B=40°,∠C=80°,
∴∠DAE=
1
2
×80°-
1
2
×40°=20°,
∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°;
(4)∠EFG的度数大小不发生改变,
理由是:∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°.
∴∠BAC=180°-(∠B+∠C)=180°-30°-70°=80°,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×80°=40°,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠DAC=180°-90°-70°=20°,
∴∠DAE=∠CAE-∠CAD=40°-20°=20°;
(2)∠DAE=
1
2
β-
1
2
α,
理由是:∵∠C=β,∠B=α,
∴∠BAC=180°-(∠B+∠C)=180°-α-β,
∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC=
1
2
×(180°-α-β)=90°-
1
2
α-
1
2
β,
∵AD⊥BC,
∴∠ADC=90°,
∵∠C=β,
∴∠DAC=180°-90°-β=90°-β,
∴∠DAE=∠CAE-∠CAD=90°-
1
2
α-
1
2
β-(90°-β)=
1
2
β-
1
2
α;
(3)∵∠B=40°,∠C=80°,
∴∠DAE=
1
2
×80°-
1
2
×40°=20°,
∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°;
(4)∠EFG的度数大小不发生改变,
理由是:∵AD⊥BC,FG⊥BC,
∴∠ADE=∠FGE=90°,
∴AD∥FG,
∴∠EFG=∠DAE=20°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询