向量能够证明的定理
1个回答
展开全部
步骤1
记向量i
,使i垂直于ac于c,△abc三边ab,bc,ca为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(c-90))+b·0+c·cos(90-a)
=-asinc+csina=0
接着得到正弦定理
其他
步骤2.
在锐角△abc中,设bc=a,ac=b,ab=c。作ch⊥ab垂足为点h
ch=a·sinb
ch=b·sina
∴a·sinb=b·sina
得到a/sina=b/sinb
同理,在△abc中,
b/sinb=c/sinc
步骤3.
证明a/sina=b/sinb=c/sinc=2r:
任意三角形abc,作abc的外接圆o.
作直径bd交⊙o于d.
连接da.
因为直径所对的圆周角是直角,所以∠dab=90度
因为同弧所对的圆周角相等,所以∠d等于∠c.
所以c/sinc=c/sind=bd=2r
类似可证其余两个等式。
记向量i
,使i垂直于ac于c,△abc三边ab,bc,ca为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180-(c-90))+b·0+c·cos(90-a)
=-asinc+csina=0
接着得到正弦定理
其他
步骤2.
在锐角△abc中,设bc=a,ac=b,ab=c。作ch⊥ab垂足为点h
ch=a·sinb
ch=b·sina
∴a·sinb=b·sina
得到a/sina=b/sinb
同理,在△abc中,
b/sinb=c/sinc
步骤3.
证明a/sina=b/sinb=c/sinc=2r:
任意三角形abc,作abc的外接圆o.
作直径bd交⊙o于d.
连接da.
因为直径所对的圆周角是直角,所以∠dab=90度
因为同弧所对的圆周角相等,所以∠d等于∠c.
所以c/sinc=c/sind=bd=2r
类似可证其余两个等式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询