证明:三角形的中位线平行于第三边,并且等于第三边的一遍
2个回答
展开全部
如图,已知△ABC中,D,E分别是AB,AC两边中点。
求证:DE平行于BC且等于BC/2证明:
方法一:过C作AB的平行线交DE的延长线于G点。∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴四边形BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立.方法二:坐标法:设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)则一条边长为 :根号(x2-x1)^2+(y2-y1)^2另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2最后化简时将x3,y3消掉正好中位线长为其对应边长的一半方法三:延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEF、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立
求证:DE平行于BC且等于BC/2证明:
方法一:过C作AB的平行线交DE的延长线于G点。∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴四边形BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立.方法二:坐标法:设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)则一条边长为 :根号(x2-x1)^2+(y2-y1)^2另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2最后化简时将x3,y3消掉正好中位线长为其对应边长的一半方法三:延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEF、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询