证明:三角形的中位线平行于第三边,并且等于第三边的一遍

 我来答
百度网友60b19deb5c3
2020-02-08 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:718万
展开全部
如图,已知△ABC中,D,E分别是AB,AC两边中点。
求证:DE平行于BC且等于BC/2证明:

方法一:过C作AB的平行线交DE的延长线于G点。∵CG∥AD∴∠A=∠ACG∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)∴△ADE≌△CGE (A.S.A)∴AD=CG(全等三角形对应边相等)∵D为AB中点∴AD=BD∴BD=CG又∵BD∥CG∴四边形BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DG∥BC且DG=BC∴DE=DG/2=BC/2∴三角形的中位线定理成立.方法二:坐标法:设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)则一条边长为 :根号(x2-x1)^2+(y2-y1)^2另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2最后化简时将x3,y3消掉正好中位线长为其对应边长的一半方法三:延长DE到点G,使EG=DE,连接CG∵点E是AC中点∴AE=CE∵AE=CE、∠AED=∠CEF、DE=GE∴△ADE≌△CGE (S.A.S)∴AD=CG、∠G=∠ADE∵D为AB中点∴AD=BD∴BD=CG∵点D在边AB上∴DB∥CG∴BCGD是平行四边形∴DE=DG/2=BC/2∴三角形的中位线定理成立
辉兰英曹冬
2020-04-16 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:32%
帮助的人:915万
展开全部
已知:如图,△ABC中,D、E分别是AB、AC的中点,
求证:DE∥BC,且DE=1/2BC
证明:延长DE至F,使EF=DE,连结CF,
∵EF=ED,∠CEF=∠AED,CE=AE,
∴△CEF≌△AED,
∴∠ECF=∠A,CF=AD,
∴AB∥CF,BD=AD=CF,
∴四边形BCFD是平行四边形
∴DF=BC,DF∥BC,
∴DE=1/2DF=1/2BC,DE∥BC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式