设Sn是等差数列{an}的前n项和,若S3比S6=1比3,求S6比S12=
展开全部
设等差数列首项为a,公差为d:
S3=3a+3d
S6=6a+15d
S12=12a+66d
由题意:
S3/S6=1/3
即:(3a+3d)/(6a+15d)=1/3
解得:a=2d
∴S6/S12
=(6a+15d)/(12a+66d)
=27d/90d
=27/90
=3/10
S3=3a+3d
S6=6a+15d
S12=12a+66d
由题意:
S3/S6=1/3
即:(3a+3d)/(6a+15d)=1/3
解得:a=2d
∴S6/S12
=(6a+15d)/(12a+66d)
=27d/90d
=27/90
=3/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询