已知函数f(x)=-2sin(2x+φ)(|φ|<π),若(π/5,5π/8)是f(x)的一个单调递增区间,则φ的值为_____
1个回答
展开全部
解: f(x)=-2sin(2x+φ)的单调递增区间为[2kπ+π/2,2kπ+3π/2]
即2kπ+π/2≤2x+φ≤2kπ+3π/2
解得kπ+π/4-φ/2≤x≤kπ+3π/4-φ/2
因为(π/5,5π/8)是f(x)的一个单调递增区间
所以(π/5,5π/8)包含于[kπ+π/4-φ/2,kπ+3π/4-φ/2]
即kπ+π/4-φ/2≤π/5,5π/8≤kπ+3π/4-φ/2
解得2kπ+π/10≤φ≤2kπ+π/4
又因为|φ|<π,所以φ的取值为π/10≤φ≤π/4
即2kπ+π/2≤2x+φ≤2kπ+3π/2
解得kπ+π/4-φ/2≤x≤kπ+3π/4-φ/2
因为(π/5,5π/8)是f(x)的一个单调递增区间
所以(π/5,5π/8)包含于[kπ+π/4-φ/2,kπ+3π/4-φ/2]
即kπ+π/4-φ/2≤π/5,5π/8≤kπ+3π/4-φ/2
解得2kπ+π/10≤φ≤2kπ+π/4
又因为|φ|<π,所以φ的取值为π/10≤φ≤π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询