如图,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y2=-1.(1)求证:M点
如图,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y2=-1.(1)求证:M点的坐标为(1,0);(2)求证:OA⊥OB;(...
如图,直线l与抛物线y2=x交于A(x1,y1),B(x2,y2)两点,与x轴相交于点M,且y1y2=-1.(1)求证:M点的坐标为(1,0);(2)求证:OA⊥OB;(3)求△AOB的面积的最小值.
展开
展开全部
(1)设M点的坐标为(x0,0),直线l方程为x=my+x0,
代入y2=x得y2-my-x0=0①,
y1,y2是此方程的两根,
∴x0=-y1y2=1,即M点的坐标为(1,0).
(2)∵y1y2=-1,
∴x1x2+y1y2=y12y22+y1y2=y1y2(y1y2+1)=0
∴OA⊥OB.
(3)由方程①,y1+y2=m,y1y2=-1,且|OM|=x0=1,
于是S△AOB=
|OM||y1?y2|=
=
≥1,
∴当m=0时,△AOB的面积取最小值1.
代入y2=x得y2-my-x0=0①,
y1,y2是此方程的两根,
∴x0=-y1y2=1,即M点的坐标为(1,0).
(2)∵y1y2=-1,
∴x1x2+y1y2=y12y22+y1y2=y1y2(y1y2+1)=0
∴OA⊥OB.
(3)由方程①,y1+y2=m,y1y2=-1,且|OM|=x0=1,
于是S△AOB=
1 |
2 |
1 |
2 |
(y1+y2)2?4y1y2 |
1 |
2 |
m2+4 |
∴当m=0时,△AOB的面积取最小值1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询