已知等差数列{an}的前n项和Sn,公差d≠0,且a3+S5=42,a1,a4,a13成等比数列.(1)求数列{an}的通项公
已知等差数列{an}的前n项和Sn,公差d≠0,且a3+S5=42,a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)设{bnan}是首项为1,公比为3...
已知等差数列{an}的前n项和Sn,公差d≠0,且a3+S5=42,a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)设{ bnan }是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn.
展开
展开全部
(1)∵等差数列{an}的前n项和Sn,公差d≠0,
且a3+S5=42,a1,a4,a13成等比数列,
∴
,
解得a1=3,d=2,
∴an=3+(n-1)×2=2n+1.
(2)∵{
}是首项为1,公比为3的等比数列,
∴
=3n-1,即bn=(2n+1)?3n-1,
∴Tn=3?30+5?3+7?32+…+(2n+1)?3n-1,①
3Tn=3?3+5?32+7?33+…+(2n+1)?3n,②
①-②,得:-2Tn=3+2(3+32+…+3n-1)-(2n+1)?3n
=3+2×
-(2n+1)?3n
=3-3+3n-1-(2n+1)?3n
=3n-1-(2n+1)?3n,
∴Tn=
?3n-
.
且a3+S5=42,a1,a4,a13成等比数列,
∴
|
解得a1=3,d=2,
∴an=3+(n-1)×2=2n+1.
(2)∵{
bn |
an |
∴
bn |
2n+1 |
∴Tn=3?30+5?3+7?32+…+(2n+1)?3n-1,①
3Tn=3?3+5?32+7?33+…+(2n+1)?3n,②
①-②,得:-2Tn=3+2(3+32+…+3n-1)-(2n+1)?3n
=3+2×
3(1?3n?1) |
1?3 |
=3-3+3n-1-(2n+1)?3n
=3n-1-(2n+1)?3n,
∴Tn=
2n+1 |
2 |
3n?1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询