什么是显著性水平
显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。
显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。
假设检验是围绕对原假设内容的审定而展开的。如果原假设正确我们接受了(同时也就拒绝了备择假设),或原假设错误我们拒绝了(同时也就接受了备择假设),这表明我们作出了正确的决定。但是,由于假设检验是根据样本提供的信息进行推断的,也就有犯错误的可能。
显著性水平的理解
显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。
事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:
1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。
2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。
显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:
1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。
2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。
假设检验是围绕对原假设内容的审定而展开的。如
果原假设正确我们接受了(同时也就拒绝了备择假设),或原假设错误我们拒绝了(同时也就接受了备择假设),这表明我们作出了正确的决定。但是,由于假设检验是根据样本提供的信息进行推断的,也就有犯错误的可能。
有这样一种情况,原假设正确,而我们却把它当成错误的加以拒绝。犯这种错误的概率用α表示,统计上把α称为假设检验中的显著性水平,也就是决策中所面临的风险。
扩展资料
假设检验的意义:
假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量。
依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。
用样本指标估计总体指标,其结论有的完全可靠,有的只有不同程度的可靠性,需要进一步加以检验和证实。
通过检验,对样本指标与假设的总体指标之间是否存在差别作出判断,是否接受原假设。这里必须明确,进行检验的目的不是怀疑样本指标本身是否计算正确,而是为了分析样本指标和总体指标之间是否存在显著差异
参考资料来源:百度百科-显著性水平
参考资料来源:百度百科-假设检验