设函数f(x)=lg(x+√(x^2+1) 证明f(x)在其定义域上是单调增函数
1个回答
展开全部
设x1>x2
f(x1)-f(x2)=lg(x1+√(x1^2+1)-lg(x2+√(x2^2+1)
=lg(x1+√(x1^2+1)/(x2+√(x2^2+1)
因为x1>x2 所以x1+√(x1^2+1)>x2+√(x2^2+1)
所以(x1+√(x1^2+1)/(x2+√(x2^2+1)>1
所以f(x1)-f(x2)>lg1=0
所以f(1)>f(x2)
所以f(x)在其定义域上是单调增函数
f(x1)-f(x2)=lg(x1+√(x1^2+1)-lg(x2+√(x2^2+1)
=lg(x1+√(x1^2+1)/(x2+√(x2^2+1)
因为x1>x2 所以x1+√(x1^2+1)>x2+√(x2^2+1)
所以(x1+√(x1^2+1)/(x2+√(x2^2+1)>1
所以f(x1)-f(x2)>lg1=0
所以f(1)>f(x2)
所以f(x)在其定义域上是单调增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询