初等函数有哪些?
初等函数定义:由常数和基本初等函数经过有限次四则运算和有限次函数复合步骤所构成并可用一个式子表示的函数。
初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生,并且能用一个解析式表示的函数。
简介
幂函数定义:一般地,形如y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。一般形式如下:(α为常数,且可以是自然数、有理数,也可以是任意实数或复数。)
指数函数定义:指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。一般形式如下:(a>0, a≠1)
对数函数定义:一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。一般形式如下:(a>0, a≠1,x>0,特别当α=e时,记为y=ln x)