用数学归纳法证明:1-1/2+1/3-1/4+...+1/2n-1-1/2n=1/n+1+1/n+2+...+1/n+1
展开全部
n=1时,左=1-1/2=1/2 右面=1/2成立,
假设n=k时,成立:1-1/2+1/3-1/4+...+1/2k-1-1/2k=1/k+1+1/k+2+...+1/k+k
则n=k+1时,
右=1/(k+2)+1/(k+3)+...+1/(k+1+k)+1/(2K+2)
=1/(k+2)+1/k+3)+...+1/(2k+1)+1/(2k+2).........................1
左=[1-1/2+1/3-1/4+...+1/2k-1-1/2k]+1/(2k+1)-1/(2k+2)
=1/(k+1)+1/(k+2)+...+1/(k+k)+1/(2k+1)-1/(2k+2)
=1/(k+2)+1/(k+3)+...+(2k+1)+1/(k+1)-1/(2k+2)
=1/(k+2)+1/(k+3)+...+(2k+1)+(2k+2-k-1)/[(k+1)(2k+2)]
=1/(k+2)+1/(k+3)+...+(2k+1)+(k+1)/[(k+1)(2k+2)]
=1/(k+2)+1/(k+3)+...+(2k+1)+1/(2k+2).............................2
1式=2式
所以n=k+1时也成立,
所以原式成立。
假设n=k时,成立:1-1/2+1/3-1/4+...+1/2k-1-1/2k=1/k+1+1/k+2+...+1/k+k
则n=k+1时,
右=1/(k+2)+1/(k+3)+...+1/(k+1+k)+1/(2K+2)
=1/(k+2)+1/k+3)+...+1/(2k+1)+1/(2k+2).........................1
左=[1-1/2+1/3-1/4+...+1/2k-1-1/2k]+1/(2k+1)-1/(2k+2)
=1/(k+1)+1/(k+2)+...+1/(k+k)+1/(2k+1)-1/(2k+2)
=1/(k+2)+1/(k+3)+...+(2k+1)+1/(k+1)-1/(2k+2)
=1/(k+2)+1/(k+3)+...+(2k+1)+(2k+2-k-1)/[(k+1)(2k+2)]
=1/(k+2)+1/(k+3)+...+(2k+1)+(k+1)/[(k+1)(2k+2)]
=1/(k+2)+1/(k+3)+...+(2k+1)+1/(2k+2).............................2
1式=2式
所以n=k+1时也成立,
所以原式成立。
追问
请好好看题
追答
你的原题是错了。
如n=2时,按你的结果:
左=1-1/2+1/3-1/4=7/12
右=1/(1+1)=1/2
左不等于右,
所以题目是错了。
展开全部
1:显然n=1成立,n=2也成立
2:假设n=k成立,有1-1/2+1/3-1/4+...+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+...+1/2k
当n=k+1时,左边=1-1/2+1/3-1/4+...+1/(2k-1)-1/2k+[1/(2k+1)-1/(2k+2)]
=1/(k+1)+1/(k+2)+...+1/2k+[1/(2k+1)-1/(2k+2)] (首位两项做减法有)
=1/(k+2)+...+1/(2k+1)+1/(2k+2)
所以n=k+1时也成立。证毕
2:假设n=k成立,有1-1/2+1/3-1/4+...+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+...+1/2k
当n=k+1时,左边=1-1/2+1/3-1/4+...+1/(2k-1)-1/2k+[1/(2k+1)-1/(2k+2)]
=1/(k+1)+1/(k+2)+...+1/2k+[1/(2k+1)-1/(2k+2)] (首位两项做减法有)
=1/(k+2)+...+1/(2k+1)+1/(2k+2)
所以n=k+1时也成立。证毕
更多追问追答
追问
你证得好像不对啊,看错题了吧
原题是1-1/2+1/3-1/4+...+1/2n-1-1/2n=1/n+1+1/n+2+...+1/n+1
而你证得是1-1/2+1/3-1/4+...+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+...+1/2k
追答
因为我水平比较高,连你题目的错误都顺便帮你改正了。哈哈哈。
应该是1-1/2+1/3-1/4+...+1/2n-1-1/2n=1/(n+1)+1/(n+2)+...+1/(2n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询