3个回答
展开全部
一、填空题(每题2分,共20分)
1.计算: _______.
2.在显微镜下,一种细胞的截面可以近似地看成圆,它的半径约为0. 000 000 78m,用科学记数法,我们可以把0. 000 000 78m写成_______m.
3.据统计,某市今年参加初三毕业考试的学生为48000人.为了了解全市初三考生毕业考试数学考试情况,从中随机抽取了600名考生的数学成绩进行统计分析,在这个问题中,样本容量是________.
4.计算: _______.
5.计算: • _______.(n是整数)
6.若方程组 的解是 ,则 _______.
7.一个多边形的每一个外角都是60°,则这个多边形的内角和为________°.
8.若x-y=2,xy=3,则x2y-xy2=________.
9.若 =ab-c, =ad-bc,则 × _______.
10.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_______°.
二、选择题(每题3分,共24分,请将答案填写在表格中)
题号 11 12 13 14 15 16 17 18
答案
11.下列各计算中,正确的是( )
A. B.
C. • D.
12.下列四种说法;①为了了解某批灯泡的使用寿命可以用普查的方式;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一个事件发生的概率只有十亿分之一,那么它是不可能事件.其中,正确的说法是( )
A.②④ B.①② C.③④ D.②③
13.某人不慎将一块三角形的玻璃摔碎成如下图所示的四块(即图中标有1、2、3.,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来形状相同的三角形玻璃.应该带( )
A.第1块 B.第2块 C.第3块 D.第4块
14.如下图,AB=DB,∠1=∠2,添加了下面的条件但仍不能判定△ABC≌△DBE的是( )
A.BC=BE B.∠ACB=∠DEB C.∠A=∠D D.AC=DE
15.如图,DE∥BC,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A的度数是 ( )
A.60° B.50° C.40° D.不能确定
16.如图,与左边正方形图案属于全等的图案是( )
17.某中学七年级—班40名同学为灾区捐款,共捐款2000元,捐款情况如下表:
由于疏忽,表格中捐款40元和50元的人数忘记填写了,若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )
A. B.
C. D.
18.若关于x,y的二元一次方程组 的解满足不等式x<0,y>0,则k的取值范围是( )
A.-7<k< B.-7<k<- C.-3<k< D.-7<k<3
三、解答题(56分,写出必要的解答过程)
19.计算:(每小题3分,共6分)
(1) (2) •
20.因式分解:(每小题3分,共6分)
(1) x2+5x+6 (2) ac-bc+3a-3b
21.(本题4分)先化简,再求值:(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),其中x= .
22.解方程组:(每小题4分,共8分)
(1) (2)
23.(本题4分)学习了统计知识后,某班的数学老师要求学生就本班同学的上学方式进行一次调查统计,下图是通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)该班共有_______名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中:“乘车”部分所对应的圆心角的度数是_______°;
(4)若全年级有700名学生,估计该年级骑自行车上学的学生人数大约是_______人.
本班同学上学方式条形统计图 本班同学上学方式扇形统计图
24.(本题5分)如图,已知:AB=AC,BD=CD,E为AD上一点,求证:
(1) △ABD∽△ACD;
(2) ∠BED=∠CED.
25.(本题4分)如图,∠DBC和∠ECB是△ABC的两个外角.
(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(保留作图痕迹,不写画法)
(2)过点P分别画AB、AC、BC的垂线段PM PN、PQ,垂足为M、N、Q;
(3)垂线段PM、PN、PQ相等吗?(直接给出结论,不需说明理由)
26.(本题6分)先阅读下面的内容,再解决问题,
例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2—6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
问题(1)若x2+2y2-2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.
27.(本题6分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖的长方体纸盒.(长方形的宽与正方形的边长相等)
(1)现有正方形纸板50张,长方形纸板100张,若要做竖式纸盒个x,横式纸盒y个.
①根据题意,完成以下表格:
②若纸板全部用完,求x、y的值;
(2)若有正方形纸板90张,长方形纸板a张(a是整数),做成上述两种纸盒,纸板恰好全部用完.已知164<a<174,求a的值.
28.(本题7分)如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交
的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.
参考答案
就这么多能显示
1.计算: _______.
2.在显微镜下,一种细胞的截面可以近似地看成圆,它的半径约为0. 000 000 78m,用科学记数法,我们可以把0. 000 000 78m写成_______m.
3.据统计,某市今年参加初三毕业考试的学生为48000人.为了了解全市初三考生毕业考试数学考试情况,从中随机抽取了600名考生的数学成绩进行统计分析,在这个问题中,样本容量是________.
4.计算: _______.
5.计算: • _______.(n是整数)
6.若方程组 的解是 ,则 _______.
7.一个多边形的每一个外角都是60°,则这个多边形的内角和为________°.
8.若x-y=2,xy=3,则x2y-xy2=________.
9.若 =ab-c, =ad-bc,则 × _______.
10.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是_______°.
二、选择题(每题3分,共24分,请将答案填写在表格中)
题号 11 12 13 14 15 16 17 18
答案
11.下列各计算中,正确的是( )
A. B.
C. • D.
12.下列四种说法;①为了了解某批灯泡的使用寿命可以用普查的方式;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一个事件发生的概率只有十亿分之一,那么它是不可能事件.其中,正确的说法是( )
A.②④ B.①② C.③④ D.②③
13.某人不慎将一块三角形的玻璃摔碎成如下图所示的四块(即图中标有1、2、3.,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来形状相同的三角形玻璃.应该带( )
A.第1块 B.第2块 C.第3块 D.第4块
14.如下图,AB=DB,∠1=∠2,添加了下面的条件但仍不能判定△ABC≌△DBE的是( )
A.BC=BE B.∠ACB=∠DEB C.∠A=∠D D.AC=DE
15.如图,DE∥BC,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A的度数是 ( )
A.60° B.50° C.40° D.不能确定
16.如图,与左边正方形图案属于全等的图案是( )
17.某中学七年级—班40名同学为灾区捐款,共捐款2000元,捐款情况如下表:
由于疏忽,表格中捐款40元和50元的人数忘记填写了,若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组( )
A. B.
C. D.
18.若关于x,y的二元一次方程组 的解满足不等式x<0,y>0,则k的取值范围是( )
A.-7<k< B.-7<k<- C.-3<k< D.-7<k<3
三、解答题(56分,写出必要的解答过程)
19.计算:(每小题3分,共6分)
(1) (2) •
20.因式分解:(每小题3分,共6分)
(1) x2+5x+6 (2) ac-bc+3a-3b
21.(本题4分)先化简,再求值:(x-1)(x-2)-3x(x+3)+2(x+2)(x-1),其中x= .
22.解方程组:(每小题4分,共8分)
(1) (2)
23.(本题4分)学习了统计知识后,某班的数学老师要求学生就本班同学的上学方式进行一次调查统计,下图是通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)该班共有_______名学生;
(2)将“骑自行车”部分的条形统计图补充完整;
(3)在扇形统计图中:“乘车”部分所对应的圆心角的度数是_______°;
(4)若全年级有700名学生,估计该年级骑自行车上学的学生人数大约是_______人.
本班同学上学方式条形统计图 本班同学上学方式扇形统计图
24.(本题5分)如图,已知:AB=AC,BD=CD,E为AD上一点,求证:
(1) △ABD∽△ACD;
(2) ∠BED=∠CED.
25.(本题4分)如图,∠DBC和∠ECB是△ABC的两个外角.
(1)用直尺和圆规分别作∠DBC和∠ECB的平分线,设它们相交于点P;(保留作图痕迹,不写画法)
(2)过点P分别画AB、AC、BC的垂线段PM PN、PQ,垂足为M、N、Q;
(3)垂线段PM、PN、PQ相等吗?(直接给出结论,不需说明理由)
26.(本题6分)先阅读下面的内容,再解决问题,
例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2—6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
问题(1)若x2+2y2-2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.
27.(本题6分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖的长方体纸盒.(长方形的宽与正方形的边长相等)
(1)现有正方形纸板50张,长方形纸板100张,若要做竖式纸盒个x,横式纸盒y个.
①根据题意,完成以下表格:
②若纸板全部用完,求x、y的值;
(2)若有正方形纸板90张,长方形纸板a张(a是整数),做成上述两种纸盒,纸板恰好全部用完.已知164<a<174,求a的值.
28.(本题7分)如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.
(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.
(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.
(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交
的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.
参考答案
就这么多能显示
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询