求解第21题
(1)
2b = 4, b = 2
x²/a² + y²/4 = 1, 4x² + a²y² - 4a² = 0
代入x = 4 - 2y, 并整理得: (a² + 16)y² - 64y + 4(16 - a²) = 0
令其二根为p, q: p + q = 64/(a² + 16), pq = 4(16 - a²)/(a² + 16)
令弦长为l, l² = 20 = (4 - 2a - 4 + 2q)² + (p - q)² = 5(p - q)² = 5[(p + q)² - 4pq]
= 5[64²/(a² + 16)² - 16(16 - a²)/(a² + 16)]
4(a²)²/(a² + 16)² = 1
a = 4 (舍去a = -4 < 0, 即复数根)
x²/16 + y²/4 = 1
(2) 椭圆的中心沿着x + 2y = 0平移(不妨假定向左上方平移), 则右焦点F(2√3, 0)也沿着一条与x + 2y = 0的直线平移; 令该直线l'为x + 2y = t, 该直线过F, 可得t = 2√3, l'为x + 2y = 2√3, 与x + y = 0的交点F'即为F平移后的位置, 容易求F'(-2√3, 2√3), FF'和中心平移的距离相同, 为d = √[(-2√3 - 2√3)² + (2√3 - 0)²] = 2√15