
高数二重积分,谢谢
1个回答
展开全部
1、原式=∫(0,1)dx∫(0,x)√(x^2-y^2)dy
=∫(0,1)dx*[(x^2/2)*arcsin(y/x)+(y/2)*√(x^2-y^2)]|(0,x)
=∫(0,1)(π/4)*x^2dx
=(π/12)*x^3|(0,1)
=π/12
2、原式=∫(0,1)dy∫(0,√y)xy/√(1+y^3)dx
=∫(0,1)dy*[(yx^2)/2√(1+y^3)]|(0,√y)
=(1/2)*∫(0,1)(y^2)/√(1+y^3)dy
=(1/6)*∫(0,1)d(1+y^3)/√(1+y^3)
=(1/3)*√(1+y^3)|(0,1)
=(√2-1)/3
=∫(0,1)dx*[(x^2/2)*arcsin(y/x)+(y/2)*√(x^2-y^2)]|(0,x)
=∫(0,1)(π/4)*x^2dx
=(π/12)*x^3|(0,1)
=π/12
2、原式=∫(0,1)dy∫(0,√y)xy/√(1+y^3)dx
=∫(0,1)dy*[(yx^2)/2√(1+y^3)]|(0,√y)
=(1/2)*∫(0,1)(y^2)/√(1+y^3)dy
=(1/6)*∫(0,1)d(1+y^3)/√(1+y^3)
=(1/3)*√(1+y^3)|(0,1)
=(√2-1)/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询