为什么a+b的行列式不等于a的行列式加b的行列式,可以举一个例子吗
如果是一般的行列式当然没有公式|a+b|=|a|+|b|,而如果是通过某行或列展开之后,得到的|c|=|a|+|b|,那么行列式值当然就是二者的和。
因为b行列式不为零,所以b=k*q1q2...qt(qi为初等矩阵,对应a的初等列变换),由于矩阵经过初等列变换不改变秩,故a经每步初等列变换秩序不变,故r(ab)=r(a)。
扩展资料:
性质:
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
因为b行列式不为零,所以b=k*q1q2,qt(qi为初等矩阵,对应a的初等列变换)
由于矩阵经过初等列变换不改变秩,故a经每步初等列变换秩序不变,故
r(ab)=r(a)
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
扩展资料
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
举一个例子来说明这一点:
假设有两个矩阵:
A = [[1, 2], [3, 4]]
B = [[5, 6], [7, 8]]
计算a+b的行列式:
(a+b)的行列式 = [[1+5, 2+6], [3+7, 4+8]] = [[6, 8], [10, 12]]。
计算a的行列式与b的行列式之和:
a的行列式 + b的行列式 = [[1, 2], [3, 4]] + [[5, 6], [7, 8]] = [[1+5, 2+6], [3+7, 4+8]] = [[6, 8], [10, 12]]。
可以看到,对于这个例子而言,a+b的行列式与a的行列式加上b的行列式是相等的。但是这只是一个特殊的情况,在一般情况下,两者是不等的。
这表明行列式的运算不仅涉及对各个元素进行简单的加减操作,还涉及到矩阵的组合和排列,因此不能简单地将行列式的加法规则简化为对应元素的加法。
由于矩阵经过初等列变换不改变秩,故a经每步初等列变换秩序不变,故
r(ab)=r(a)
敬请采纳,不懂追问
如果是一般的行列式
当然没有公式|a+b|=|a|+|b|
而如果是通过某行或列展开之后
得到的|c|=|a|+|b|
那么行列式值当然就是二者的和