已知a,b,c为有理数,且多项式x³+ax²+bx+c能够被x²+3x-4整除

 我来答
郭映雁尹敏
2019-03-31 · TA获得超过3.2万个赞
知道小有建树答主
回答量:1.2万
采纳率:32%
帮助的人:923万
展开全部
解:
(1)由已知
多项式
x^3+ax^2+bx+c能被x^2+3x-4
整除

则存在
k,满足
x^3+ax^2+bx+c=(x+k)(x^2+3x-4)
=x^3+(k+3)x^2+(3k-4)x-4k
则有
a=k+3,
b=3k-4,
c=-4k
4a+c=4(k+3)-4k=12;
(2)
2a-2b-c
=2k+6-
6k
+8+4k
=14
(3)
-4k≥k+3>1
-5k≥3
k≤-3/5
k+3>1
k>-2
又a,b,c为整数
∴k为整数
∴k=-1
∴a=2,b=-7,c=4
∴c>a>b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式