已知四边形ABCD中,AB垂直于AD,BC垂直于CD,AB=BC,角ADC=120度

已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕... 已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.
 (1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.
  (2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.
  (3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系. 2、3小题需要过程。。
展开
三月初始4
2012-06-19 · TA获得超过292个赞
知道答主
回答量:113
采纳率:0%
帮助的人:63.8万
展开全部
(1) EF=AE+CF
(2) 延长EA到G,使AG=FC,
证得三角形GAB≌三角形:FCB GA=FC ∠GAB=∠FCB AB=CB(SAS)
所以得到:∠GBA=∠FBC GB=FB AG=CF
因为∠FBC+∠FBA=60 所以∠GBA+∠FBA=60 即:∠GBF=60
又因为∠EBF=30 所以∠GBE=30
证得三角形GBE≌三角形FBE:GB=FB ∠GBE=∠FBC BE=BE(SAS)
所以得:GE=FE
因为 GE=AG+AE 所以EF=AE+CF(等量代换)
(3) 图3 AE-CF=EF 图4 AE+ EF = CF
创远信科
2024-07-24 广告
矢量网络分析 (VNA) 是最重要的射频和微波测量方法之一。 创远信科提供广泛的多功能、高性能网络分析仪(最高40GHz)和标准多端口解决方案。创远信科的矢量网络分析仪非常适用于分析无源及有源器件,比如滤波器、放大器、混频器及多端口模块。 ... 点击进入详情页
本回答由创远信科提供
勤劳致富有人耕7312
2012-06-24 · TA获得超过7万个赞
知道大有可为答主
回答量:5.5万
采纳率:0%
帮助的人:7255万
展开全部
哈哈哈
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式