问高数问题?

 我来答
小茗姐姐V
高粉答主

2021-02-25 · 关注我不会让你失望
知道大有可为答主
回答量:4.7万
采纳率:75%
帮助的人:6912万
展开全部

反函数,

自变量与因变量互换,

定义域与值域互换:

追答
反函数,
自变量与因变量互换,
定义域与值域互换:

钲铮鲭
2021-02-26 · TA获得超过113个赞
知道答主
回答量:43
采纳率:0%
帮助的人:29.1万
展开全部
1.其实从泰勒定理的广泛目的就可以理解,为了用一个简单的多项式函数Pn(x)来表示一个复杂函数f(x),就必然要求余项R满足上式。
如果要证明,其实是先设Rn(x)=f(x)-P(x)的,详细如下:

若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)
证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:
P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n
来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n.
接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。
麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+Rn
其中Rn=f(n+1)(θx)/(n+1)!•x^(n+1),这里0<θ<1。
证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:
f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+f(n+1)(ξ)/(n+1)!•x^(n+1)
由于ξ在0到x之间,故可写作θx,0<θ<1。
2.n=3时无界(无穷大),所以数列无界。一般的,要证明数列(函数)有界,必须证明其所有值都是有界的,而证明无界只需一个特例即可。
3.用洛比达法则
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
老黄知识共享
高能答主

2021-03-26 · 有学习方面的问题可以向老黄提起咨询。
老黄知识共享
采纳数:5109 获赞数:26734

向TA提问 私信TA
展开全部
你要理解对数的概念就会明白了。设2的x次方等于a, 那么以2为底,a的对数就是x,这里的a就是里面的y/(1-y),因为你要化成x=f(y)的形式,自然要提取出这个指数x来,所以要用到对数的概念。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我是小天解说
2021-02-26 · 超过36用户采纳过TA的回答
知道小有建树答主
回答量:98
采纳率:0%
帮助的人:5.8万
展开全部
两边加对数:ln y/(1-y)=ln 2^x
->ln y/(1-y)=x*ln2
->x=[ln y/(1-y)]/ln2
->x=log2 [y/(1-y)]

你好,看懂了吗?
如果看懂了,希望能被采纳。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友84ada11
2021-02-26 · 超过30用户采纳过TA的回答
知道答主
回答量:141
采纳率:31%
帮助的人:20.1万
展开全部
高数中说的反函数,其实就是一个函数
因此求反函数就是将函数中的x表示成含y的关系式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式