y=﹙1-X²﹚½的原函数

 我来答
舒适还明净的海鸥i
2022-05-14 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.8万
展开全部
原函数为y=(1/2)*arcsinx+(1/2)*x*(1-x^2)^(1/2)
令x=sint,[即t=arcsint]
∫(1-sint^2)^(1/2)d(sin2t)=∫cost^2dt
=∫(1+cos2t)/2 dt=(1/2)*t+(1/4)*sin2t [ 将t换为x的表达式]
=(1/2)*arcsinx+(1/2)*x*(1-x^2)^(1/2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式