圆台外接球的表面积公式:R=(h^2+r^2)/2h。
多边形内切球球心是多边形一切二面角平分面的交点。
多边形外接球球心O的位置可用下述方法之一定出来:点O是通过多面体非平行平面外接圆的圆心并垂直于非平行平面的两条直线的交点;点O是通过多面体非平行棱中点、并垂直于这些棱的三个平面的交点。
圆台外接球的表面积相关结论:
长方体一定有外接球,外接球的球心即其体对角线的交点,半径为体对角线的一半。
正方体既有内切球,也有外接球,球心都是体对角线的交点,内切球的半径为棱长的一半,外接球的半径为体对角线的一半。
长方体外接球的直径=长方体的体对角线长。
正方体外接球的直径=正方体的体对角线长。
圆柱体外接球的直径=圆柱体的体对角线长。