1^2+2^2+3^2+...+n^2怎么证明

 我来答
小熊玩科技gj
高能答主

2022-11-17 · 世界很大,慢慢探索
知道大有可为答主
回答量:2.2万
采纳率:100%
帮助的人:552万
展开全部

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6。

证明过程如下:

n^2=n(n+1)-n

1^2+2^2+3^2+.+n^2

=1*2-1+2*3-2+.+n(n+1)-n

=1*2+2*3+...+n(n+1)-(1+2+...+n)

由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3

所以1*2+2*3+...+n(n+1)

=[1*2*3-0+2*3*4-1*2*3+.+n(n+1)(n+2)-(n-1)n(n+1)]/3

前后消项:

=[n(n+1)(n+2)]/3

所以1^2+2^2+3^2+.+n^2

=[n(n+1)(n+2)]/3-[n(n+1)]/2

=n(n+1)[(n+2)/3-1/2]

=n(n+1)[(2n+1)/6]

=n(n+1)(2n+1)/6

扩展资料:

数列求和的方法

1、公式法

(1)等差数列求和公式:Sn=1/2*n(a1+an)=d/2*n+(a1-d/2)*n

(2)等比数列求和公式:Sn=na1(q=1)、Sn=a1*(1-q^n)/(1-q)(q≠1)

(3)自然数求和公式:(1+2+3+...+n)=n(n+1)/2

2、错位相减法

3、倒序相加法

4、分组法

5、裂项相消法

(1)1/(n*(n+1))=1/n-1/(n+1)

(2)1/((2n-1)*(2n+1))=1/2(1/(2n-1)-1/(2n+1))

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式