等比数列常用公式
等比数列 公式. 求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等,其通项公式为 ,任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意 讨论公比q是否为1. 若 ,那么 为 等比中项。. 记π n =a 1 ·a 2 ...a n ,则有π 2n-1 = (a n )2n-1,π 2n+1 = (a n +1)2n+1。. 另外,一个各项均为 正数 的等比数列各项取同 底数 后构成一个 等差数列 ;反之,以任一个正数C为底,用一个等差数列的各项做 指数 构造幂Can,则是等比数列。. 在这个意义下,我们说:一个正项等比数列与等差数列是"同构"的。等比数列 公式. 求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等,其通项公式为 ,任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意 讨论公比q是否为1. 若 ,那么 为 等比中项。. 记π n =a 1 ·a 2 ...a n ,则有π 2n-1 = (a n )2n-1,π 2n+1 = (a n +1)2n+1。. 另外,一个各项均为 正数 的等比数列各项取同 底数 后构成一个 等差数列 ;反之,以任一个正数C为底,用一个等差数列的各项做 指数 构造幂Can,则是等比数列。. 在这个意义下,我们说:一个正项等比数列与等差数列是"同构"的。