展开全部
∵∠BAD=∠C=2∠DAC=45°
∴∠DAC==45°/2
∴∠BAC=∠BAD+∠DAC=45°+45°/2=67.5°
∴∠B=180°-∠BAC-∠C=180°-45-67.5=67.5°
由正弦定理得
DC/sin22.5°=AD/sin45°
AD=DCsin45°/sin22.5°
由正弦定理得
BD/sin45°=AD/sin67.5°
BD=ADsin45°/sin67.5°
=DCsin²45°/sin22.5°sin67.5°
=DCsin²45°/sin22.5°cos22.5°
=2DCsin²45°/2sin22.5°cos22.5°
=2DCsin²45°/sin45°
=2DCsin45°
=2×2×√2/2
=2√2
∴∠DAC==45°/2
∴∠BAC=∠BAD+∠DAC=45°+45°/2=67.5°
∴∠B=180°-∠BAC-∠C=180°-45-67.5=67.5°
由正弦定理得
DC/sin22.5°=AD/sin45°
AD=DCsin45°/sin22.5°
由正弦定理得
BD/sin45°=AD/sin67.5°
BD=ADsin45°/sin67.5°
=DCsin²45°/sin22.5°sin67.5°
=DCsin²45°/sin22.5°cos22.5°
=2DCsin²45°/2sin22.5°cos22.5°
=2DCsin²45°/sin45°
=2DCsin45°
=2×2×√2/2
=2√2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
角BAD=角C,三角形BAD和三角形BCA相似,AB:BC:AC=BD:AB:AD
若角BAD=角C=2角DAC=45°,角B=180°-5*45°/2=135°/2
角ADC=180°-3*45°/2=225°/2,角ADB=180°-225°/2=135°/2=角B,所以AB=AD,则AC=BC
AB:BC=BD:AB=AB:(BD+DC),AB^2=BD(BD+2),
BD^2=2AB^2-2AB^2cos45°=2AB^2(1-√2/2)
BD^2/(2-√2)=BD^2+2BD,(1-√2)BD^2+2(2-√2)BD=0,BD=2(2-√2)/(√2-1)=2(3√2-4)
若角BAD=角C=2角DAC=45°,角B=180°-5*45°/2=135°/2
角ADC=180°-3*45°/2=225°/2,角ADB=180°-225°/2=135°/2=角B,所以AB=AD,则AC=BC
AB:BC=BD:AB=AB:(BD+DC),AB^2=BD(BD+2),
BD^2=2AB^2-2AB^2cos45°=2AB^2(1-√2/2)
BD^2/(2-√2)=BD^2+2BD,(1-√2)BD^2+2(2-√2)BD=0,BD=2(2-√2)/(√2-1)=2(3√2-4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询