芝诺的四个著名悖论
芝诺的四个著名悖论是:二分法悖论、阿基里斯悖论、飞矢不动、游行队伍悖论。
1、二分法悖论:一个人在到达目的地之前,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2。按照这个要求可以无限循环的进行下去。因此有两种情况:①这个人根本没有出发;②只要他出发了,就永远到不了终点。(尽管离终点越来越近)
2、阿基里斯悖论:其实,这个悖论就是指这个有趣的故事——阿基里斯与乌龟赛跑。阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟10倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。
3、飞矢不动:“飞矢不动”中的“矢”指的是弓箭中的箭。正常的射箭,任何人都知道,只要箭离了弦,就能飞出去,经过一段空间运动后,到达另一个位置。然而,芝诺认为:如果我们截取“飞矢”的每一个瞬间,它在空中都是“静止”的。既然每一个瞬间都是静止的,所有的瞬间加起来也应该是静止的,因此,“飞矢”是“不动”的。
4、游行队伍悖论:假设在运动场上,在一瞬间(一个最小时间单位)里,相对于观众席A,队列B、C分别各向右和左移动一个距离单位。而此时,相对于B,C移动了两个距离单位。芝诺认为,既然队列可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,那么,半个时间单位就等于一个时间单位。