如图,四边形ABCD,∠BAD=∠BCD=90°AB=AD,若四边形ABCD的面积是24c㎡,则AC的长为( )
2个回答
展开全部
连接BD,
令R=BD/2, α=∠BDC
有四边形ABCD的面积 = S△ABD+S△BCD
= R^2 + 2R^2sinαcosα
= R^2 (1 + 2sinαcosα)
由余弦定理可得AC^2 = AD^2 + DC^2 -2ADDCcos(α+π/4)
= 2R^2 + 4R^2cosαcosα - 4√2R^2cosαcos(α+π/4)
= 2 (R^2 (1 + 2sinαcosα))
即AC^2 = 2倍四边形ABCD的面积 = 2*24 =48c㎡
AC = 4√3cm
令R=BD/2, α=∠BDC
有四边形ABCD的面积 = S△ABD+S△BCD
= R^2 + 2R^2sinαcosα
= R^2 (1 + 2sinαcosα)
由余弦定理可得AC^2 = AD^2 + DC^2 -2ADDCcos(α+π/4)
= 2R^2 + 4R^2cosαcosα - 4√2R^2cosαcos(α+π/4)
= 2 (R^2 (1 + 2sinαcosα))
即AC^2 = 2倍四边形ABCD的面积 = 2*24 =48c㎡
AC = 4√3cm
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询